We propose a flexible light field camera architecture that is at the convergence of optics, sensor electronics, and applied mathematics. Through the co-design of a sensor that comprises tailored, Angle Sensitive Pixels and advanced reconstruction algorithms, we show that-contrary to light field cameras today-our system can use the same measurements captured in a single sensor image to recover either a high-resolution 2D image, a low-resolution 4D light field using fast, linear processing, or a high-resolution light field using sparsity-constrained optimization.
Deep learning using convolutional neural networks (CNNs) is quickly becoming the state-of-the-art for challenging computer vision applications. However, deep learning's power consumption and bandwidth requirements currently limit its application in embedded and mobile systems with tight energy budgets. In this paper, we explore the energy savings of optically computing the first layer of CNNs. To do so, we utilize bio-inspired Angle Sensitive Pixels (ASPs), custom CMOS diffractive image sensors which act similar to Gabor filter banks in the V1 layer of the human visual cortex. ASPs replace both image sensing and the first layer of a conventional CNN by directly performing optical edge filtering, saving sensing energy, data bandwidth, and CNN FLOPS to compute. Our experimental results (both on synthetic data and a hardware prototype) for a variety of vision tasks such as digit recognition, object recognition, and face identification demonstrate a reduction in image sensor power consumption and data bandwidth from sensor to CPU, while achieving similar performance compared to traditional deep learning pipelines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.