Enantiomeric D- or L-arabinose based low molecular-weight organogelators (LMOGs), accessible in a single synthetic step from D-/L-arabinose have been found to be efficient gelators for aromatic solvents and refined and crude oil. The organogel has also been successfully used as a micro-reactor for a photochemical reaction.
A combined experimental and theoretical study of the Diels-Alder reactions between 2-trimethylsiloxy-1,3-cyclohexadienes (2-11) and (E)-1,4-diphenylbut-2-ene-1,4-dione (1) is reported. Two diastereomeric products, 5-endo-6-exo- (nx) and 5-exo-6-endo- (xn) dibenzoyl derivatives, are possible with symmetric trans-dienophile (1). While in many cases 5-endo-6-exo product is preferred over the corresponding 5-exo-6-endo product, the product ratio nx:xn is found to vary with the position of substituents on the diene. The density functional theory studies with the mPW1PW91/6-31G* as well as the B3LYP/6-31G* levels reveal that the electrostatic repulsion between the oxygen lone pairs on the diene and the dienophile is critical to the observed product selectivities. The optimized transition state geometries though appeared to involve secondary orbital interactions, careful examination of the frontier Kohn-Sham orbitals as well as calculations with the natural bond orbital (NBO) analyses confirm the absence of SOI in these transition states. In the case of methyl-substituted dienes, a cumulative effect of steric and electrostatic interactions between the diene and the dienophile is found to be the controlling element toward the observed selectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.