The fork-based development mechanism provides the flexibility and the unified processes for software teams to collaborate easily in a distributed setting without too much coordination overhead. Currently, multiple social coding platforms support fork-based development, such as GitHub, GitLab, and Bitbucket. Although these different platforms virtually share the same features, they have different emphasis. As GitHub is the most popular platform and the corresponding data is publicly available, most of the current studies are focusing on GitHub hosted projects. However, we observed anecdote evidences that people are confused about choosing among these platforms, and some projects are migrating from one platform to another, and the reasons behind these activities remain unknown. With the advances of Software Heritage Graph Dataset (SWHGD), we have the opportunity to investigate the forking activities across platforms. In this paper, we conduct an exploratory study on 10 popular open-source projects to identify cross-platform forks and investigate the motivation behind. Preliminary result shows that cross-platform forks do exist. For the 10 subject systems in this study, we found 81,357 forks in total among which 179 forks are on GitLab. Based on our qualitative analysis, we found that most of the cross-platform forks that we identified are mirrors of the repositories on another platform, but we still find cases that were created due to preference of using certain functionalities (e.g. Continuous Integration (CI)) supported by different platforms. This study lays the foundation of future research directions, such as understanding the differences between platforms and supporting cross-platform collaboration.
To process a large amount of data sequentially and systematically, proper management of workflow components (i.e., modules, data, configurations, associations among ports and links) in a Scientific Workflow Management System (SWfMS) is inevitable. Managing data with provenance in a SWfMS to support reusability of workflows, modules, and data is not a simple task. Handling such components is even more burdensome for frequently assembled and executed complex workflows for investigating large datasets with different technologies (i.e., various learning algorithms or models). However, a great many studies propose various techniques and technologies for managing and recommending services in a SWfMS, but only a very few studies consider the management of data in a SWfMS for efficient storing and facilitating workflow executions. Furthermore, there is no study to inquire about the effectiveness and efficiency of such data management in a SWfMS from a user perspective. In this paper, we present and evaluate a GUI version of such a novel approach of intermediate data management with two use cases (Plant Phenotyping and Bioinformatics). The technique we call GUI-RISPTS (Recommending Intermediate States from Pipelines Considering Tool-States) can facilitate executions of workflows with processed data (i.e., intermediate outcomes of modules in a workflow) and can thus reduce the computational time of some modules in a SWfMS. We integrated GUI-RISPTS with an existing workflow management system called SciWorCS. In SciWorCS, we present an interface that users use for selecting the recommendation of intermediate states (i.e., modules' outcomes). We investigated GUI-RISPTS's effectiveness from users' perspectives along with measuring its overhead in terms of storage and efficiency in workflow execution.
Release notes are admitted as an essential technical document in software maintenance. They summarize the main changes, e.g. bug fixes and new features, that have happened in the software since the previous release. Manually producing release notes is a time-consuming and challenging task. For that reason, sometimes developers neglect to write release notes. For example, we collect data from GitHub with over 1900 releases, and among them, 37% of the release notes are empty. To mitigate this problem, we propose an automatic release notes generation approach by applying the text summarization techniques, i.e. TextRank. To improve the keyword extraction method of traditional TextRank, we integrate the GloVe word embedding technique with TextRank. After generating release notes automatically, we apply machine learning algorithms to classify the release note contents (or sentences). We classify the contents into six categories, e.g. bug fixes and performance improvements, to represent the release notes better for users. We use the evaluation metric, e.g. ROUGE, to evaluate the automatically generated release notes. We also compare the performance of our technique with two popular extractive algorithms, e.g. Luhn’s and latent semantic analysis (LSA). Our evaluation results show that the improved TextRank method outperforms the two algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.