The gas-phase reaction of CCl+ with acetonitrile (CH3CN) is studied using a linear Paul ion trap coupled to a time-of-flight mass spectrometer. This work builds on a previous study of the reaction of CCl+ with acetylene [K. J. Catani et al., J. Chem. Phys. 152, 234310 (2020)] and further explores the reactivity of CCl+ with organic neutral molecules. Both of the reactant species are relevant in observations and models of chemistry in the interstellar medium. Nitriles, in particular, are noted for their relevance in prebiotic chemistry and are found in the atmosphere of Titan, one of Saturn’s moons. This work represents one of the first studied reactions of a halogenated carbocation with a nitrile and the first exploration of CCl+ with a nitrile. Reactant isotopologues are used to unambiguously assign ionic primary products from this reaction: HNCCl+ and C2H3+. Branching ratios are measured, and both primary products are determined to be equally probable. Quantum chemical and statistical reaction rate theory calculations illuminate pertinent information for interpreting the reaction data, including reaction thermodynamics and a potential energy surface for the reaction, as well as rate constants and branching ratios for the observed products. In particular, the reaction products and potential energy surface stimulate questions regarding the strength and role of the nitrile functional group, which can be further explored with more reactions of this class.
Polycyclic aromatic hydrocarbons (PAHs) are intermediates in the formation of soot particles and interstellar grains. However, their formation mechanisms in combustion and interstellar environments are not fully understood. The production of tricyclic PAHs and, in particular, the conversion of a PAH containing a five-membered ring to one with a six-membered ring is of interest to explain PAH abundances in combustion processes. In the present work, resonant ionization mass spectrometry in conjunction with isotopic labelling is used to investigate the formation of the phenalenyl radical from acenaphthylene and methane in an electrical discharge. We show that in this environment, the CH cycloaddition mechanism converts a fivemembered ring to a six-membered ring. This mechanism can occur in tandem with other PAH 1 formation mechanisms such as hydrogen abstraction/ acetylene addition (HACA) to produce larger PAHs in flames and the interstellar medium.
Quantum chemistry and statistical reaction rate theory calculations have been performed to investigate the products and kinetics of indenyl radical decomposition. Three competitive product sets are identified, including formation of a cyclopentadienyl radical (c-C5H5) and diacetylene (C4H2), which has not been included in prior theoretical kinetics investigations. Rate coefficients for indenyl decomposition are determined from master equation simulations at 1800–2400 K and 0.01–100 atm, and temperature- and pressure-dependent rate coefficient expressions are incorporated into a detailed chemical kinetic model for indene pyrolysis. Indenyl is found to predominantly decompose to o-benzyne (o-C6H4) + propargyl (C3H3), with lesser amounts of fulvenallenyl (C7H5) + C2H2 and c-C5H5 + C4H2.
The reaction of the acetylene cation (C 2 H 2 + ) with acetonitrile (CH 3 CN) is measured in a linear Paul ion trap coupled to a time-of-flight mass spectrometer. C 2 H 2 + and CH 3 CN are both noted for their astrochemical abundance and predicted relevance for understanding prebiotic chemistry. The observed primary products are c-C
Polycyclic aromatic hydrocarbons (PAHs) are intermediates in the formation of soot particles and interstellar grains. However, their formation mechanisms in combustion and interstellar environments are not fully understood. The production of tricyclic PAHs and, in particular, the conversion of a PAH containing a five-membered ring to one with a six-membered ring is of interest to explain PAH abundances in combustion processes. In the present work, resonant ionization mass spectrometry in conjunction with isotopic labelling is used to investigate the formation of the phenalenyl radical from acenaphthylene and methane in an electrical discharge. We show that in this environment, the CH cycloaddition mechanism converts a five-membered ring to a six-membered ring. This mechanism can occur in tandem with other PAH formation mechanisms such as hydrogen abstraction/ acetylene addition (HACA) to produce larger PAHs in flames and the interstellar medium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.