High-porosity metal foams are known for providing high heat transfer rates, as they provide a significant increase in wetted surface area as well as highly tortuous flow paths resulting in enhanced mixing. Further, jet impingement offers high convective cooling, particularly at the jet footprint areas on the target surface due to flow stagnation. In this study, high-porosity thin metal foams were subjected to array jet impingement, for a special crossflow scheme. High porosity (92.65%), high pore density (40 pores per inch (ppi)), and thin foams (3 mm) have been used. In order to reduce the pumping power requirements imposed by full metal foam design, two striped metal foam configurations were also investigated. For that, the jets were arranged in 3 × 6 array (x/dj = 3.42, y/dj = 2), such that the crossflow is dominantly sideways. Steady-state heat transfer experiments have been conducted for varying jet-to-target plate distance z/dj = 0.75, 2, and 4 for Reynolds numbers ranging from 3000 to 12,000. The baseline case was jet impingement onto a smooth target surface. Enhancement in heat transfer due to impingement onto thin metal foams has been evaluated against the pumping power penalty. For the case of z/dj = 0.75 with the base surface fully covered with metal foam, an average heat transfer enhancement of 2.42 times was observed for a concomitant pressure drop penalty of 1.67 times over the flow range tested.
Array-jet impingement is typically used in gas turbine blade near-wall cooling, where high rates of heat dissipation is required. The accumulated crossflow mass flux results in significant reduction in jet effectiveness in the downstream rows, leading to reduced cooling performance. In this paper, a jet impingement system equipped with U-shaped ribs (hereafter referred as “diverter”) was used for diverting the crossflow away from the jets emanating from the nozzle plate. To this end, a baseline configuration of array-jet impingement onto smooth target surface is considered, where the normalized jet-to-jet spacing (x/dj = y/dj) was 6 and the normalized jet-to-target spacing (z/dj) was 2. Crossflow diverters with thickness t of 1.5875 mm and height h of 2dj (= z) were installed at a distance of 2dj from the respective jet centers. Detailed heat transfer coefficients have been calculated through transient liquid crystal experiments carried out over Reynolds numbers ranging from 3500 to 12,000. It has been observed that crossflow diverters protect the downstream jets from upstream jet deflection, thereby maximizing their stagnation cooling potential. An average of 15–30% enhancement in Nusselt number is obtained over the flow range tested. This benefit in heat transfer came at a cost of increased pumping power to maintain similar flow rate in the system. At a given pumping power, crossflow diverters yielded an enhancement of 9–15% in heat transfer compared with the baseline case.
An experimental investigation was carried out to study heat transfer and fluid flow in high porosity (93%) thin metal foams subjected to array jet impingement, under maximum and intermediate crossflow exit schemes. Separate effects of pore-density and jet-to-target spacing (z/d) have been studied. To this end, for a fixed pore-density of 40PPI foams, three different jet-to-target spacing (z/d=1, 2, 6) were investigated, and for a fixed z/d of 6, three different pore-density of 5, 20 and 40PPI were investigated. The jet diameter-based Reynolds number was varied between 3,000-12,000. Experiments were carried out to characterize local flow distribution and Nusselt numbers for different jet impingement configurations. The heat transfer results were obtained through steady-state experiments. Local flow measurements show that, as z/d decreases, the mass flux distributions are increasingly skewed with higher mass flow rates near the exits. Heat transfer enhancement has been calculated and the optimum foam configuration has been deduced from the pumping power. It was observed that Nusselt number increases with increasing pore density at a fixed z/d and reduces with increase in z/d at constant pore density. Intermediate crossflow had higher heat transfer than maximum crossflow with significantly lower pumping power. Under a constant pumping power condition, z/d = 2, 40ppi foam provided an average enhancement of 35% over the corresponding baseline configuration for intermediate crossflow scheme and was found to be the most optimum configuration.
High porosity metal foams are known for providing high heat transfer rates, as they provide significant increase in wetted surface area as well as highly tortuous flow paths to coolant flowing over fibers. Further, jet impingement is also known to offer high convective cooling, particularly on the footprints of the jets on the target to be cooled. Jet impingement, however, leads to large special gradients in heat transfer coefficient, leading to increased thermal stresses. In this study, we have tried to use high porosity thin metal foams subjected to array jet impingement, for a special crossflow scheme. One aim of using metal foams is to achieve cooling uniformity also, which is tough to achieve for impingement cooling. High porosity (92.65%) and high pore density (40 pores per inch, 3 mm thick) foams have been used as heat transfer enhancement agents. In order to reduce the pumping power requirements imposed by full metal foam design, we developed two striped metal foam configurations. For that, the jets were arranged in 3 × 6 array (x/d = 3.42, y/d = 2), such that the crossflow is dominantly sideways. This crossflow scheme allowed usage of thin stripes, where in one configuration we studied direct impingement onto stripes of metal foam and in the other, we studied impingement onto metal and crossflow interacted with metal foams. Steady state heat transfer experiments have been conducted for a jet plate configuration with varying jet-to-target plate distance z/d = 0.75, 2 and 4. The baseline case was jet impingement onto a smooth target surface. Jet diameter-based Reynolds number was varied between 3000 to 11000. Enhancement in heat transfer due to impingement onto thin metal foams has been evaluated against the enhancement in pumping power requirements. For a specific case of z/d = 0.75 with the base surface fully covered with metal foam, metal foams have enhanced heat transfer by 2.42 times for a concomitant pressure drop penalty of 1.67 times over the flow range tested.
Jet impingement is a cooling technique commonly employed in combustor liner cooling and high-pressure gas turbine blades. However, jets from upstream impingement holes reduce the effectiveness of downstream jets due to jet deflection in the direction of crossflow. In order to avoid this phenomenon and provide an enhanced cooling on the target surface, we have attempted to come up with a novel design called “crossflow diverters”. Crossflow diverters are U-shaped ribs that are placed between jets in the crossflow direction (under maximum crossflow condition). In this study, the baseline case is jet impingement onto a smooth surface with 10 rows of jet impingement holes, jet-to-jet spacing of X/D = Y/D = 6 and jet-to-target spacing of Z/D = 2. Crossflow diverters with thickness ‘t’ of 1.5875 mm, height ‘h’ of 2D placed in the streamwise direction at a distance of X = 2D from center of the jet have been investigated experimentally. Transient liquid crystal thermography technique has been used to obtain detailed measurement of heat transfer coefficient for four jet diameter based Reynolds numbers of 3500, 5000, 7500, 12000. It has been observed that crossflow diverters protect the downstream jets from upstream jet deflection thereby maximizing their stagnation cooling potential. An average of 15–30% enhancement in Nusselt number is obtained over the flow range tested. However, this comes at the expense of increase in pumping power. Pressure drop for the enhanced geometry is 1–1.5 times the pressure drop for baseline impingement case. At a constant pumping power, crossflow diverters produce 9–15% enhancement in heat transfer coefficient as compared to baseline smooth case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.