In this paper, we present a novel Biomedical Question Answering system, BioAMA: "Biomedical Ask Me Anything" on task 5b of the annual BioASQ challenge (Balikas et al., 2015). We focus on a wide variety of question types including factoid, list based, summary and yes/no type questions that generate both exact and wellformed 'ideal' answers. For summarytype questions, we combine effective IRbased techniques for retrieval and diversification of relevant snippets for a question to create an end-to-end system which achieves a ROUGE-2 score of 0.72 and a ROUGE-SU4 score of 0.71 on ideal answer questions (7% improvement over the previous best model). Additionally, we propose a novel Natural Language Inference (NLI) based framework to answer the yes/no questions. To train the NLI model, we also devise a transfer-learning technique by cross-domain projection of word embeddings. Finally, we present a two-stage approach to address the factoid and list type questions by first generating a candidate set using NER taggers and ranking them using both supervised and unsupervised techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.