In this paper, we evaluate the performance implications of using a buddy scheme for contiguous node allocation, in conjunction with a backfilling job scheduler for clusters. When a contiguous node allocation strategy is used, there is a trade-off between improved run-time of jobs (due to reduced link contention and lower communication overhead) and increased wait-time of jobs (due to external fragmentation of the processor system). Using trace-based simulation, a buddy strategy for contiguous node allocation is shown to be unattractive compared to the standard noncontiguous allocation strategy used in all production job schedulers. A simple but effective scheme for selective buddy allocation is then proposed, that is shown to perform better than non-contiguous allocation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.