The molecular basis of aberrant protein glycosylation, a pathological alteration widespread in colorectal cancers (CRC), and the mechanisms by which it contributes to tumor progression remain largely unknown. We performed targeted re-sequencing of 430 glycosylation-associated genes in a series of patient-derived CRC cell lines (N = 31) and matched primary tumor tissues, identifying 12 new significantly mutated glycosylation-associated genes in colon cancer. In particular, we observed an enrichment of mutations in genes (B3GNT2, B4GALT2, ST6GALNAC2) involved in the biosynthesis of N- and Cores 1–3 O-linked glycans in the colon, accounting for ~16% of the CRCs tested. Analysis of independent large-scale tumor tissue datasets confirmed recurrent mutations within these genes in colon and other gastrointestinal cancers. Systematic biochemical and phenotypic characterization of the candidate wild-type and mutant glycosyltransferases demonstrated these mutations as either markedly altering protein localization, post-translational modification, encoded enzymatic activities and/or the migratory potential of colon carcinoma cells. These findings suggest that functionally deleterious mutations in glycosyltransferase genes in part underlie aberrant glycosylation, and contribute to the pathogenesis of molecular subsets of colon and other gastrointestinal malignancies.
STAT (signal transducer and activator of transcription) proteins play a critical role in cellular response to a wide variety of cytokines and growth factors by regulating specific nuclear genes. STAT-dependent gene transcription can be finely tuned through the association with cofactors in the nucleus. We showed previously that STAT5 (including 5a and 5b) specifically interacts with a mitochondrial enzyme PDC-E2 (E2 subunit of pyruvate dehydrogenase complex) in both leukemic T cells and cytokine-stimulated cells. However, the functional significance of this novel association remains largely unknown. Here we report that PDC-E2 may function as a co-activator in STAT5-dependent nuclear gene expression. Subcellular fractionation analysis revealed that a substantial amount of PDC-E2 was constitutively present in the nucleus of BaF3, an interleukin-3 (IL-3)-dependent cell line. IL-3-induced tyrosine-phosphorylated STAT5 associated with nuclear PDC-E2 in co-immunoprecipitation analysis. These findings were confirmed by confocal immunofluorescence microscopy showing constant nuclear localization of PDC-E2 and its co-localization with STAT5 after IL-3 stimulation. Similar to mitochondrial PDC-E2, nuclear PDC-E2 was lipoylated and associated with PDC-E1. Overexpression of PDC-E2 in BaF3 cells augmented IL-3-induced STAT5 activity as measured by reporter assay with consensus STAT5-binding sites. Consistent with the reporter data, PDC-E2 overexpression in BaF3 cells led to elevated mRNA levels of endogenous SOCS3 (suppressor of cytokine signaling 3) gene, a known STAT5 target. We further identified two functional STAT5-binding sites in the SOCS3 gene promoter important for its IL-3-inducibility. The observation that both cis-acting elements were essential to detect the stimulatory effect by PDC-E2 strongly supports the role of PDC-E2 in up-regulating the transactivating ability of STAT5. All together, our results reveal a novel function of PDC-E2 in the nucleus. It also raises the possibility of nuclear-mitochondrial crosstalk through the interaction between STAT5 and PDC-E2.
Author Contributions: K.G. conceived and supervised the study. V.V. performed the pathway modelling and statistical analyses. A.C., M.I.C., J.S.W., and N.J.S. contributed tissue samples. A.K.C coordinated the clinical annotation of all samples in the study. J.W. performed pathology review of tissue specimens. A.K. and J.W performed immunohistochemistry analysis. Y.G. and Y.S performed quality assessment, transcript assembly and abundance estimation using RNA sequence data. S.D.M. provided colon cancer cell lines. A.
Esophageal adenocarcinoma (EAC) is a deadly cancer with increasing incidence in the U.S., but mechanisms underlying pathogenesis are still mostly elusive. In addressing this question, we assessed gene-fusion landscapes by comprehensive RNA sequencing (RNAseq) of 55 pre-treatment EAC and 49 non-malignant biopsy tissues from patients undergoing endoscopy for Barrett’s esophagus. In this cohort, we identified 21 novel candidate EAC-associated fusions occurring in 3.33%-11.67% of EACs. Two candidate fusions were selected for validation by PCR and Sanger sequencing in an independent set of pre-treatment EAC (N=115) and non-malignant (N=183) biopsy tissues. In particular, we observed RPS6KB1–VMP1 gene fusion as a recurrent event occurring in ~10% of EAC cases. Notably, EAC cases harboring RPS6KB1–VMP1 fusions exhibited significantly poorer overall survival as compared to fusion-negative cases. Mechanistic investigations established that the RPS6KB1–VMP1 transcript coded for a fusion protein which significantly enhanced the growth rate of non-dysplastic Barrett’s esophagus cells. Compared to the wild-type VMP1 protein, which mediates normal cellular autophagy, RPS6KB1–VMP1 fusion exhibited aberrant subcellular localization and was relatively ineffective in triggering autophagy. Overall, our findings identified RPS6KB1–VMP1 as a genetic fusion that promotes EAC by modulating autophagy-related processes, offering new insights into the molecular pathogenesis of esophageal adenocarcinomas.
Characterizing moderate penetrance susceptibility genes is an emerging frontier in colorectal cancer (CRC) research. GALNT12 is a strong candidate CRC-susceptibility gene given previous linkage and association studies, and inactivating somatic and germline alleles in CRC patients. Previously, we found rare segregating germline GALNT12 variants in a clinic-based cohort (N = 118) with predisposition for CRC. Here, we screened a new population-based cohort of incident CRC cases (N = 479) for rare (MAF ≤1%) deleterious germline GALNT12 variants. GALNT12 screening revealed eight rare variants. Two variants were previously described (p.Asp303Asn, p.Arg297Trp), and additionally, we found six other rare variants: five missense (p.His101Gln, p.Ile142Thr, p.Glu239Gln, p.Thr286Met, p.Val290Phe) and one putative splice-altering variant (c.732-8 G>T). Sequencing of population-matched controls (N = 400) revealed higher burden of these variants in CRC cases compared with healthy controls (P = 0.0381). We then functionally characterized the impact of substitutions on GALNT12 enzyme activity using in vitro-derived peptide substrates. Three of the newly identified GALNT12 missense variants (p.His101Gln, p.Ile142Thr, p.Val290Phe) demonstrated a marked loss (>2-fold reduction) of enzymatic activity compared with wild-type (P ≤ 0.05), whereas p.Glu239Gln exhibited a ∼2-fold reduction in activity (P = 0.077). These findings provide strong, independent evidence for the association of GALNT12 defects with CRC-susceptibility; underscoring implications for glycosylation pathway defects in CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.