Background Despite multi-model therapy of maximal surgical resection, radiation, chemotherapy, and tumor treating fields, the median survival of Glioblastoma (GBM) patients is less than 15 months. Protein Arginine Methyltransferase 5 (PRMT5) catalyzes the symmetric di-methylation of arginine residues and is overexpressed in GBM. Inhibition of PRMT5 causes senescence in stem-like GBM tumor cells. LB100, a first-in-class small molecular inhibitor of Protein Phosphatase 2A (PP2A) can sensitize therapy-resistant tumor cells. Here, we tested the anti-GBM effect of concurrent PRMT5 and PP2A inhibition. Methods Patient-derived primary GBM neurospheres (GBMNS), transfected with PRMT5 target-specific siRNA were treated with LB100 and subjected to in vitro assays including PP2A activity and western blot. The intracranial mouse xenograft model was used to test the in vivo antitumor efficacy of combination treatment. Results We found that PRMT5-depletion increased PP2A activity in GBMNS. LB100 treatment significantly reduced the viability of PRMT5-depleted GBMNS compared to PRMT5 intact GBMNS. LB100 enhanced G1 cell cycle arrest induced by PRMT5-depletion. Combination therapy also increased the expression of phospho-MLKL. Necrostatin-1 rescued PRMT5-depleted cells from the cytotoxic effects of LB100, indicating that necroptosis caused the enhanced cytotoxicity of combination therapy. In the in vivo mouse tumor xenograft model, LB100 treatment combined with transient depletion of PRMT5 significantly decreased tumor size and prolonged survival, while LB100 treatment alone had no survival benefit. Conclusion Overall, combined PRMT5 and PP2A inhibition had significantly greater antitumor effects than PRMT5 inhibition alone.
Background The prognosis of glioblastoma (GBM) remains dismal because therapeutic approaches have limited effectiveness. A new targeted treatment using MEK inhibitors, including trametinib, has been proposed to improve GBM therapy. Trametinib had a promising preclinical effect against several cancers but its adaptive treatment resistance precluded its clinical translation in glioblastoma. Previously, we have demonstrated that Protein Arginine Methyltransferase 5 (PRMT5) is upregulated in GBM and its inhibition promotes apoptosis and senescence in differentiated and stem-like tumor cells, respectively. We tested whether inhibition of PRMT5 can enhance the efficacy of trametinib against GBM. Methods Patient-derived primary GBM neurospheres (GBMNS) with transient PRMT5 knockdown were treated with trametinib and cell viability, proliferation, cell cycle progression, ELISA, and western blot were analyzed. In vivo, NSG mice were intracranially implanted with PRMT5-intact and -depleted GBMNS, treated with trametinib by daily oral gavage, and observed for tumor progression and mice survival rate. Results PRMT5 depletion enhanced trametinib-induced cytotoxicity in GBMNS. PRMT5 knockdown significantly decreased trametinib-induced AKT and ERBB3 escape pathways. However, ERBB3 inhibition alone failed to block trametinib-induced AKT activity suggesting that the enhanced antitumor effect imparted by PRMT5 knockdown in trametinib treated GBMNS resulted from AKT inhibition and not ERBB3 inhibition. In orthotopic murine xenograft models, PRMT5-depletion extended the survival of tumor-bearing mice, and combination with trametinib further increased survival. Conclusion Combined PRMT5/MEK inhibition synergistically inhibited glioblastoma in animal models and is a promising strategy for glioblastoma therapy.
Hereditary cancer predisposition syndromes (HCS) become more recognizable as the knowledge about them expands, and genetic testing becomes more affordable. In this review, we discussed the known HCS that predispose to central and peripheral nervous system tumors. Different genetic phenomena were highlighted, and the important cellular biological alterations were summarized. Genetic mosaicism and germline mutations are features of HCS, and recently, they were described in normal population and as modifiers for the genetic landscape of sporadic tumors. Description of the tumors arising in these conditions was augmented by representative cases explaining the main pathological findings. Clinical spectrum of the syndromes and diagnostic criteria were tabled to outline their role in defining these disorders. Interestingly, precision medicine has found its way to help these groups of patients by offering targeted preventive measures. Understanding the signaling pathway alteration of mammalian target of rapamycin (mTOR) in tuberous sclerosis helped introducing mTOR inhibitors as a prophylactic treatment in these patients. More research to define the germline genetic alterations and resulting cellular signaling perturbations is needed for effective risk-reducing interventions beyond prophylactic surgeries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.