The respiratory system of a cyanide-resistant Klebsiella oxytoca was analyzed by monitoring the changes in the cytochrome contents in response to various inhibitors in the presence of various concentrations of cyanide. The cells grown in the medium without cyanide (KCN) have two terminal oxidases, cytochrome d (K i = 10 3S M KCN) and o (K i = 10 3Q M KCN). When cells were grown on medium with 1 mM KCN, the expression of both b-type cytochrome and cytochrome d in the plasma membranes of the cell decreased by more than 50%, while cytochrome o increased by 70%, as compared with the cells grown in the absence of KCN. Two terminal oxidases with K i values of about 10 3Q M and 1.7U10 3P M KCN were observed in the plasma membrane fractions of the cells growing on KCN enriched medium. 2-n-Heptyl-4-hydroxyquinoline-N-oxide markedly inhibited the oxidation of NADH by the plasma membranes from the cells grown in the medium without KCN, but not in those plasma membranes from KCN-grown cells. The NADH oxidases in plasma membranes of K. oxytoca grown with and without KCN were equally sensitive to UV irradiation. Adding freshly isolated quinone to the UV-damaged plasma membranes restored the NADH oxidase activity from both types of plasma membranes. From these results, we propose the presence of a non-heme type of terminal oxidase to account for the KCN resistance in K. oxytoca. z
The respiratory system of a cyanide-resistant Klebsiella oxytoca was analyzed by monitoring the changes in the cytochrome contents in response to various inhibitors in the presence of various concentrations of cyanide. The cells grown in the medium without cyanide (KCN) have two terminal oxidases, cytochrome d (Ki = 10(-5) M KCN) and o (Ki = 10(-3) M KCN). When cells were grown on medium with 1 mM KCN, the expression of both b-type cytochrome and cytochrome d in the plasma membranes of the cell decreased by more than 50%, while cytochrome o increased by 70%, as compared with the cells grown in the absence of KCN. Two terminal oxidases with Ki values of about 10(-3) M and 1.7 x 10(-2) M KCN were observed in the plasma membrane fractions of the cells growing on KCN enriched medium. 2-n-Heptyl-4-hydroxyquinoline-N-oxide markedly inhibited the oxidation of NADH by the plasma membranes from the cells grown in the medium without KCN, but not in those plasma membranes from KCN-grown cells. The NADH oxidases in plasma membranes of K. oxytoca grown with and without KCN were equally sensitive to UV irradiation. Adding freshly isolated quinone to the UV-damaged plasma membranes restored the NADH oxidase activity from both types of plasma membranes. From these results, we propose the presence of a non-heme type of terminal oxidase to account for the KCN resistance in K. oxytoca.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.