Salah satu bentuk media sosial yang sedang populer saat ini adalah twitter. Namun tidak jarang pengguna twitter memberikan komentar yang cenderung menyinggung pengguna twitter lain dengan kalimat negatif. Salah satu bentuk komentar negatif yang sering dilontarkan pengguna twitter adalah tentang body shaming. Body shaming merupakan komentar negatif terhadap fisik seseorang seperti gendut, pesek, cungkring dan lain-lain. Berdasarkan perilaku body shaming pada twitter, maka pada penelitian ini akan dilakukan analisis sentimen menggunakan metode Naive Bayes Classifier. Tujuan dari penelitian adalah mengukur performa accuracy, precision, recall, dan f-measure pada metode Naïve Bayes Classifier dalam analisis sentimen terhadap body shaming pada Twitter. Dataset tersebut digunakan untuk mengklasifikasikan tweets yang bersifat positif dan negatif. Teknik klasifikasi yang digunakan yaitu dengan mengukur performa dari accuracy, precision, recall, dan f-measure menggunakan metode naïve bayes classifier. Berdasarkan hasil pengujian performansi accuracy, precision, recall, dan f-measure dengan feature model trigram menggunakan metode naïve bayes classifier dilakukan pada dataset tweets body shaming yang berjumlah 908 data. Berdasarkan hasil pengujian performa dengan model trigram didapatkan hasil accuracy 61%, precision 56%, recall 55% dan f-measure 55%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.