Ebola virus (EBOV) infection blocks cellular production of alpha/beta interferon (IFN-␣Further, VP24 is found to specifically interact with karyopherin ␣1, the nuclear localization signal receptor for PY-STAT1, but not with karyopherin ␣2, ␣3, or ␣4. Overexpression of VP24 results in a loss of karyopherin ␣1-PY-STAT1 interaction, indicating that the VP24-karyopherin ␣1 interaction contributes to the block to IFN signaling. These data suggest that VP24 is likely to be an important virulence determinant that allows EBOV to evade the antiviral effects of IFNs.The filoviruses, Ebola virus (EBOV) and Marburg virus, cause periodic outbreaks of severe hemorrhagic fever in humans. In EBOV outbreaks consisting of more than 10 reported cases, mortality rates have ranged from 40 to 90% (41), and Marburg virus outbreaks have had reported case fatality rates ranging from 25 to 80% (13). This extreme virulence has made Ebola and Marburg viruses of concern both as naturally emerging pathogens and as potential bioweapons (41).The molecular mechanisms contributing to the severe pathogenesis of filovirus infection are poorly understood. Several potential mechanisms contributing to EBOV virulence have been reviewed (41). These include cytotoxicity of the viral glycoprotein, the production of proinflammatory cytokines, and the dysregulation of the coagulation cascade due to the production of tissue factor (14,20,21,62,64). Infection also appears to induce a general immune suppression (11, 53). Possible mechanisms contributing to this suppression include inhibition of dendritic cell activation and an induction of lymphocyte apoptosis (2,8,18,22,43). Each of these pathogenic processes likely occurs as a result of the active replication of the virus. Thus, the ability of the virus to counteract early antiviral responses, including those of the host's interferon system, likely plays an important role in EBOV virulence (41).EBOV encodes mechanisms to counteract the host interferon (IFN) response by blocking both production of IFN-␣/ and cellular responses to IFN-␣/ or -␥ treatment (6,24,26,27). We previously demonstrated that the EBOV VP35 protein suppresses IFN-␣/ production by inhibiting the activation of interferon regulatory factor 3 (IRF-3) (5, 7, 51), and subsequent studies confirm that VP35 exerts this function (8, 28). However, the manner in which EBOV blocks signaling from the IFN-␣/ or -␥ receptor has remained incompletely defined.IFN-␣/, a family of structurally related proteins, and IFN-␥ bind to two distinct receptors but activate similar signaling pathways (reviewed in reference 38). For both pathways, ligand binding activates receptor-associated Jak family tyrosine kinases. These undergo auto-and transphosphorylation and phosphorylate the cytoplasmic domains of the receptor subunits. The receptor-associated phosphotyrosine residues then serve as docking sites for the SH2 domains of STAT proteins. The receptor-associated STATs then undergo tyrosine-phosphorylation and form homo-or heterodimers via reciprocal SH2 domai...
Foxp3, a winged-helix family transcription factor, serves as the master switch for CD4+ regulatory T cells (Treg). We identified a unique and evolutionarily conserved CpG-rich island of the Foxp3 nonintronic upstream enhancer and discovered that a specific site within it was unmethylated in natural Treg (nTreg) but heavily methylated in naive CD4+ T cells, activated CD4+ T cells, and peripheral TGFβ-induced Treg in which it was bound by DNMT1, DNMT3b, MeCP2, and MBD2. Demethylation of this CpG site using the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (Aza) induced acetylation of histone 3, interaction with TIEG1 and Sp1, and resulted in strong and stable induction of Foxp3. Conversely, IL-6 resulted in methylation of this site and repression of Foxp3 expression. Aza plus TGFβ-induced Treg resembled nTreg, expressing similar receptors, cytokines, and stable suppressive activity. Strong Foxp3 expression and suppressor activity could be induced in a variety of T cells, including human CD4+CD25− T cells. Epigenetic regulation of Foxp3 can be predictably controlled with DNMT inhibitors to generate functional, stable, and specific Treg.
The Zaire ebolavirus protein VP24 was previously demonstrated to inhibit alpha/beta interferon (IFN-␣/)-and IFN-␥-induced nuclear accumulation of tyrosine-phosphorylated STAT1 (PY-STAT1) and to inhibit IFN-␣/-and IFN-␥-induced gene expression. These properties correlated with the ability of VP24 to interact with the nuclear localization signal receptor for PY-STAT1, karyopherin ␣1. Here, VP24 is demonstrated to interact not only with overexpressed but also with endogenous karyopherin ␣1. Mutational analysis demonstrated that VP24 binds within the PY-STAT1 binding region located in the C terminus of karyopherin ␣1. In addition, VP24 was found to inhibit PY-STAT1 binding to both overexpressed and endogenous karyopherin ␣1. We assessed the binding of both PY-STAT1 and the VP24 proteins from Zaire, mouse-adapted Zaire, and Reston Ebola viruses for interaction with all six members of the human karyopherin ␣ family. We found, in contrast to previous studies, that PY-STAT1 can interact not only with karyopherin ␣1 but also with karyopherins ␣5 and ␣6, which together comprise the NPI-1 subfamily of karyopherin ␣s. Similarly, all three VP24s bound and inhibited PY-STAT1 interaction with karyopherins ␣1, ␣5, and ␣6. Consistent with their ability to inhibit the karyopherin-PY-STAT1 interaction, Zaire, mouse-adapted Zaire, and Reston Ebola virus VP24s displayed similar capacities to inhibit IFN--induced gene expression in human and mouse cells. These findings suggest that VP24 inhibits interaction of PY-STAT1 with karyopherins ␣1, ␣5, or ␣6 by binding within the PY-STAT1 binding region of the karyopherins and that this function is conserved among the VP24 proteins of different Ebola virus species.
The library of integrated network-based cellular signatures (LINCS) L1000 data set currently comprises of over a million gene expression profiles of chemically perturbed human cell lines. Through unique several intrinsic and extrinsic benchmarking schemes, we demonstrate that processing the L1000 data with the characteristic direction (CD) method significantly improves signal to noise compared with the MODZ method currently used to compute L1000 signatures. The CD processed L1000 signatures are served through a state-of-the-art web-based search engine application called L1000CDS2. The L1000CDS2 search engine provides prioritization of thousands of small-molecule signatures, and their pairwise combinations, predicted to either mimic or reverse an input gene expression signature using two methods. The L1000CDS2 search engine also predicts drug targets for all the small molecules profiled by the L1000 assay that we processed. Targets are predicted by computing the cosine similarity between the L1000 small-molecule signatures and a large collection of signatures extracted from the gene expression omnibus (GEO) for single-gene perturbations in mammalian cells. We applied L1000CDS2 to prioritize small molecules that are predicted to reverse expression in 670 disease signatures also extracted from GEO, and prioritized small molecules that can mimic expression of 22 endogenous ligand signatures profiled by the L1000 assay. As a case study, to further demonstrate the utility of L1000CDS2, we collected expression signatures from human cells infected with Ebola virus at 30, 60 and 120 min. Querying these signatures with L1000CDS2 we identified kenpaullone, a GSK3B/CDK2 inhibitor that we show, in subsequent experiments, has a dose-dependent efficacy in inhibiting Ebola infection in vitro without causing cellular toxicity in human cell lines. In summary, the L1000CDS2 tool can be applied in many biological and biomedical settings, while improving the extraction of knowledge from the LINCS L1000 resource.
Ebola virus (EBOV) protein VP35 is a double-stranded RNA (dsRNA) binding inhibitor of host interferon (IFN)-␣/ responses that also functions as a viral polymerase cofactor.Recent structural studies identified key features, including a central basic patch, required for VP35 dsRNA binding activity. To address the functional significance of these VP35 structural features for EBOV replication and pathogenesis, two point mutations, K319A/R322A, that abrogate VP35 dsRNA binding activity and severely impair its suppression of IFN-␣/ production were identified. Solution nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography reveal minimal structural perturbations in the K319A/R322A VP35 double mutant and suggest that loss of basic charge leads to altered function. Recombinant EBOVs encoding the mutant VP35 exhibit, relative to wild-type VP35 viruses, minimal growth attenuation in IFN-defective Vero cells but severe impairment in IFN-competent cells. In guinea pigs, the VP35 mutant virus revealed a complete loss of virulence. Strikingly, the VP35 mutant virus effectively immunized animals against subsequent wild-type EBOV challenge. These in vivo studies, using recombinant EBOV viruses, combined with the accompanying biochemical and structural analyses directly correlate VP35 dsRNA binding and IFN inhibition functions with viral pathogenesis. Moreover, these studies provide a framework for the development of antivirals targeting this critical EBOV virulence factor.Ebola viruses (EBOVs) are zoonotic, enveloped negativestrand RNA viruses belonging to the family Filoviridae which cause lethal viral hemorrhagic fever in humans and nonhuman primates (47). Currently, information regarding EBOV-encoded virulence determinants remains limited. This, coupled with our lack of understanding of biochemical and structural properties of virulence factors, limits efforts to develop novel prophylactic or therapeutic approaches toward these infections.It has been proposed that EBOV-encoded mechanisms to counter innate immune responses, particularly interferon (IFN) responses, are critical to EBOV pathogenesis (7). However, a role for viral immune evasion functions in the pathogenesis of lethal EBOV infection has yet to be demonstrated.Of the eight major EBOV gene products, two viral proteins have been demonstrated to counter host IFN responses. The VP35 protein is a viral polymerase cofactor and structural protein that also inhibits IFN-␣/ production by preventing the activation of interferon regulatory factor (IRF)- 3 and -7 (3, 4, 8, 24, 27, 34, 41). VP35 also inhibits the activation of PKR, an IFN-induced, double-stranded RNA (dsRNA)-activated kinase with antiviral activity, and inhibits RNA silencing (17,20,48). The VP24 protein is a minor structural protein implicated in virus assembly and regulation of viral RNA synthesis, and changes in VP24 coding sequences are also associated with adaptation of EBOVs to mice and guinea pigs (2,13,14,27,32,37,50,52). Further, VP24 inhibits cellular responses to both IFN-␣/ an...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.