A method for improving the identification of peptides in a shotgun proteome analysis using accurate mass measurement has been developed. The improvement is based upon the derivatization of cysteine residues with a novel reagent, 2,4-dibromo-(2'-iodo)acetanilide. The derivitization changes the mass defect of cysteine-containing proteolytic peptides in a manner that increases their identification specificity. Peptide masses were measured using matrix-assisted laser desorption/ionization Fourier transform ion cyclotron mass spectrometry. Reactions with protein standards show that the derivatization of cysteine is rapid and quantitative, and the data suggest that the derivatized peptides are more easily ionized or detected than unlabeled cysteine-containing peptides. The reagent was tested on a 15N-metabolically labeled proteome from M. maripaludis. Proteins were identified by their accurate mass values and from their nitrogen stoichiometry. A total of 47% of the labeled peptides are identified versus 27% for the unlabeled peptides. This procedure permits the identification of proteins from the M. maripaludis proteome that are not usually observed by the standard protocol and shows that better protein coverage is obtained with this methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.