We compared the interannual variability of annual daily maximum and minimum extreme water levels in Lake Ontario and the St Lawrence River (Sorel station) from 1918 to 2010, using several statistical tests. The interannual variability of annual daily maximum extreme water levels in Lake Ontario is characterized by a positive long-term trend showing two shifts in mean (1929-1930 and 1942-1943) and a single shift in variance (in 1958-1959). In contrast, for the St Lawrence River, this interannual variability is characterized by a negative long-term trend with a single shift in mean, which occurred in 1955-1956. As for annual daily minimum extreme water levels, their interannual variability shows no significant long-term change in trend. However, for Lake Ontario, the interannual variability of these water levels shows two shifts in mean, which are synchronous with those for maximum water levels, and a single shift in variance, which occurred in 1965-1966. These changes in trend and stationarity (mean and variance) are thought to be due to factors both climatic (the Great Drought of the 1930s) and human (digging of the Seaway and construction of several dams and locks during the 1950s). Despite this change in means and variance, the four series are clearly described by the generalized extreme value distribution. Finally, annual daily maximum and minimum extreme water levels in the St Lawrence and Lake Ontario are negatively correlated with Atlantic multidecadal oscillation over the period from 1918 to 2010.Statistically significant values of rs (Spearman's rank correlation coefficient) and ts (calculated test value) at the 5% level are shown in bold. INTERANNUAL VARIABILITY OF ANNUAL DAILY EXTREME WATER LEVELSThe largest significant (at the 5% level) canonical structure coefficients are shown in bold.The largest significant canonical (at 95% level confidence) structure coefficients are shown in bold.
The goal of the study was to compare the modes of management of seasonal floods for different dams and to constrain their impact on the relationship between climate variables and streamflow downstream from the dams. At the Rawdon dam, downstream from which the Ouareau River is characterized by a natural‐type regulated flow regime, a ‘type A’ flood management mode prevails, in which the same rainfall and/or snowmelt events account for seasonal floods both in the unregulated (natural) stretch of river upstream from the dam and in the river downstream from the dam. As a result, seasonal floods in the natural setting and downstream from the dam are nearly synchronous. In contrast, downstream from the Matawin dam (Matawin River), which produces an inversion‐type regulated flow regime, the prevalent flood management modes are of types B and D, whereby seasonal floods observed upstream and downstream from the dam are not caused by the same rainfall and/or snowmelt events and, as a result, are not synchronous. This difference in seasonal flood management modes affects the interannual variability of the magnitude of seasonal daily maximum flows related to the seasonal floods. Thus, the interannual variability of these flows downstream from the Matawin dam differs significantly from that of flows upstream. No correlation is observed between climate variables and streamflow downstream from the Matawin dam. This absence of correlation disappears gradually at the annual scale, at which streamflow is correlated with rainfall, as is observed upstream from the dam. Copyright © 2013 John Wiley & Sons, Ltd.
Five characteristics (intensity or magnitude, duration, frequency, timing, and variability) of drought, defined using the threshold level method (TLM) and recorded in mean annual water levels in Lake Ontario and the St. Lawrence River from 1918 to 2010, were compared. Timing is the only characteristic that is different for the two water bodies. For Lake Ontario, the most intense drought occurred in the 1930s, whereas in the St. Lawrence River, intense droughts took place in the 1960s and 2000s. The Lake Ontario drought produced two shifts in mean before (decrease) and after (increase) the 1930s. The change in variance that took place in the 1960s is thought to be related to the construction of locks during the digging of the seaway. The droughts that affected the St. Lawrence River had no impact on the stationarity (mean and variance) of the annual mean water level series. Analysis of the correlation between drought severity and climate indices revealed that years characterized by very weak to moderate drought are significantly correlated with PDO (Pacific Decadal Oscillation), while those characterized by intense drought are correlated with NAO (North Atlantic Oscillation). Both climate indices are negatively correlated with Lake Ontario water levels, while they are positively correlated with St. Lawrence River levels. The study suggests that NAO may be used to predict the driest years for the two water bodies.
The monitoring station method, which is based on comparing data before and after dam construction, is commonly used to quantify the hydromorphological impacts induced by dams. However, in the absence of pre-dam construction data, other analytical methods may be used to detect changes downstream from dams that remain more or less constant over time. The study used one such method, the control station method, to constrain changes which may be linked to construction of the Rawdon Dam, in 1913, on the Ouareau River. Thus, a comparison of the hydrological (seasonal daily maximum flows) and morphological (mean bankfull width and sinuosity) evolution of the Ouareau and L'Assomption Rivers during the period 1930 to 2008 was carried out. The surface area as well as the climatic, lithological, land use and physiographic features of the two watersheds are nearly identical in the study area. The comparison revealed three changes that may be linked to the Rawdon Dam: an increase in the magnitude of daily maximum flows downstream from the dam for all four seasons, which is inferred to have resulted in extensive widening and low sinuosity of the Ouareau river channel downstream from the Rawdon Dam relative to the L'Assomption river channel. These types of morphological changes are consistent with changes observed downstream from some dams. The Rawdon Dam had no effect on the interannual variability of daily maximum flows, which are characterized by a significant increase in mean in winter in both watersheds. This increase, which is abrupt, occurred in 1973 for both rivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.