The present study reports elevated levels of endotoxin/lipopolysaccharide (LPS) concentrations in plasma from patients with sporadic amyotrophic lateral sclerosis (sALS) and Alzheimer's (AD) as compared to healthy controls. Levels of plasma LPS showed a significant positive correlation with degree of blood monocyte/macrophage activation in disease groups and was most elevated in patients with advanced sALS disease. There was a significant negative relationship between plasma LPS and levels of monocyte/macrophage IL-10 expression in sALS blood. These data suggest that systemic LPS levels and activated monocyte/macrophages may play significant roles in the pathogenesis of sALS.
The aim of this study was to identify gene expression profiles in peripheral blood mononuclear cells (PBMCs) from sporadic amyotrophic lateral sclerosis (sALS) patients to gain insights into the pathogenesis of ALS. We found that upregulation of LPS/TLR4-signaling associated genes was observed in the PMBCs from sALS patients after short-term cultivation, and that elevated levels of gene expression correlated with degree of peripheral blood monocyte activation and plasma LPS levels in sALS. Similar patterns of gene expression were reproduced in LPS stimulated PBMCs from healthy controls. These data suggest that chronic monocyte/macrophage activation may be through LPS/TLR4-signaling pathways in ALS.
An improved understanding of cell immortalization and its manifestation in clinical tumors could facilitate novel therapeutic approaches. However, only rare tumor cells, which maintain telomerase expression in vitro, immortalize spontaneously. By expression-profiling analyses of limited-life primary breast tumor cultures pre-and posthTERT transduction, and spontaneously immortalized breast cancer cell lines, we identified a common signature characteristic of tumor cell immortalization. A predominant feature of this immortalization signature (ImmSig) was the significant overexpression of oxidoreductase genes. In contrast to epithelial cells derived from low histologic grade primary tumors, which required hTERT transduction for the acquisition of ImmSig, spontaneously immortalizing high-grade tumor cultures displayed similar molecular changes independent of exogenous hTERT. Silencing the hTERT gene reversed ImmSig expression, increased cellular reactive oxygen species levels, altered mitochondrial membrane potential and induced apoptotic and proliferation changes in immortalized cells. In clinical breast cancer samples, cell-proliferation-pathway genes were significantly associated with ImmSig. In these cases, ImmSig expression itself was inversely correlated with patient survival (P ¼ 0), and was particularly relevant to the outcome of estrogen receptor-positive tumors. Our data support the notion that ImmSig assists in surmounting normal barriers related to oxidative and replicative stress response. Targeting a subset of aggressive breast cancers by reversing ImmSig components could be a practical therapeutic strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.