The genome of the bacterium Borrelia burgdorferi B31, the aetiologic agent of Lyme disease, contains a linear chromosome of 910,725 base pairs and at least 17 linear and circular plasmids with a combined size of more than 533,000 base pairs. The chromosome contains 853 genes encoding a basic set of proteins for DNA replication, transcription, translation, solute transport and energy metabolism, but, like Mycoplasma genitalium, it contains no genes for cellular biosynthetic reactions. Because B. burgdorferi and M. genitalium are distantly related eubacteria, we suggest that their limited metabolic capacities reflect convergent evolution by gene loss from more metabolically competent progenitors. Of 430 genes on 11 plasmids, most have no known biological function; 39% of plasmid genes are paralogues that form 47 gene families. The biological significance of the multiple plasmid-encoded genes is not clear, although they may be involved in antigenic variation or immune evasion.
The complete genome sequence of Treponema pallidum was determined and shown to be 1,138,006 base pairs containing 1041 predicted coding sequences (open reading frames). Systems for DNA replication, transcription, translation, and repair are intact, but catabolic and biosynthetic activities are minimized. The number of identifiable transporters is small, and no phosphoenolpyruvate:phosphotransferase carbohydrate transporters were found. Potential virulence factors include a family of 12 potential membrane proteins and several putative hemolysins. Comparison of the T. pallidum genome sequence with that of another pathogenic spirochete, Borrelia burgdorferi, the agent of Lyme disease, identified unique and common genes and substantiates the considerable diversity observed among pathogenic spirochetes.
Yeast deficient in the cytosolic copper/zinc superoxide dismutase (SOD1) exhibit metabolic defects indicative of oxidative damage even under non-stress conditions. To help identify the endogenous sources of this oxidative damage, we isolated mutant strains of S. cerevisiae that suppressed metabolic defects associated with loss of SOD1. Six complementation groups were isolated and three of the corresponding genes have been identified. One sod1⌬ suppressor represents SSQ1 which encodes a hsp70-type molecular chaperone found in the mitochondria. A second sod1⌬ suppressor gene, designated JAC1, represents a new member of the 20-kDa J-protein family of co-chaperones. Jac1p contains a mitochondrial targeting consensus sequence and may serve as the partner for Ssq1p. Homologues of Ssq1p and Jac1p are found in bacteria in close association with genes proposed to be involved in iron-sulfur protein biosynthesis. The third suppressor gene identified was NFS1. Nfs1p is homologous to cysteine desulfurase enzymes that function in iron-sulfur cluster assembly and is also predicted to be mitochondrial. Each of the suppressor mutants identified exhibited diminished rates of respiratory oxygen consumption and was found to have reduced mitochondrial aconitase and succinate dehydrogenase activities. Taken together these results suggest a role for Ssq1p, Jac1p, and Nfs1p in assembly/ maturation of mitochondrial iron-sulfur proteins and that one or more of the target Fe/S proteins contribute to oxidative damage in cells lacking copper/zinc SOD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.