The purpose of this study was to explore the ability of the central nervous system (CNS) to organize synergies at two levels of a hypothetical control hierarchy involved in two-hand multi-finger prehension tasks with one or more persons participating in the task together. At the higher level of the hierarchy, the total force and moment of force produced on an object are distributed between the thumb and the virtual finger (an imagined finger with mechanical output equal to the involved fingers of the hand), while at the lower level the virtual finger action is distributed among the four fingers. We tested a hypothesis that the CNS is able to organize synergies at only one level of the hierarchy. The subjects held vertically one of the two handles, a narrow one and a wide one. They used the four fingers of the right hand opposed by either the right hand thumb, the left hand thumb, the left hand index finger, the thumb of an experimenter, the index finger of an experimenter, or an inanimate object. Forces and moments of force produced by each digit were recorded. Indices of synergies stabilizing the mechanical output variables at each of the two levels were computed. Contrary to the expectations, force and moment of force stabilizing synergies were found at one or both levels of the hierarchy across all tasks. Unimanual tasks exhibited higher synergy indices compared to all tasks, while intrapersonal synergy indices were higher than those of interpersonal synergies. The results suggest that both feed-forward and feedback mechanisms may be used to create force and moment of force stabilizing synergies. We invoke the notion of chain effects and generalize it for relations among variance components related to stabilization of different mechanical variables. The reference configuration hypothesis offers a fruitful framework for analysis of prehension synergies.
We explored the ability of the central nervous system (CNS) to assemble synergies stabilizing the output of sets of effectors at two levels of a control hierarchy. Specifically, we asked a question: can the CNS organize both two-hand and within-a-hand force stabilizing synergies in a simple two-hand force production task that involves two fingers per hand? Intuitively, one could expect a positive answer; that is, forces produced by each hand are expected to co-vary negatively across trials to bring down the total force variability, while forces produced by each finger within-a-hand are expected to co-vary negatively to reduce the variability of that hand's contribution to the total force. The subjects were instructed to follow a trapezoidal time profile with the signal corresponding to the force produced by a set of instructed fingers in one-hand tasks with two-finger force production and in two-hand tasks with involvement of both symmetrical and asymmetrical finger pairs in the two hands. Finger force co-variation across trials was quantified and used as an index of stabilization of the force produced by all the instructed fingers, and of the force produced by finger pairs within-a-hand. No major differences were seen between the dominant and the non-dominant hand and between the twohand tasks with symmetrical and asymmetrical finger involvement. Stronger synergies were seen in the index-middle finger pair as compared to the ring-little finger pair. The main result of the study is the significantly weaker or even lacking two-finger force stabilizing synergies within-a-hand during two-hand tasks while such synergies were present in one-hand tasks. This observation points at a potential limitation in the ability of the CNS to organize synergies at two levels of a control hierarchy simultaneously. It also allows suggesting a hypothesis on two types of synergies in the human motor repertoire, well-practiced synergies that form a library serving as the foundation for all novel actions, and freshly assembled synergies.
Although evidence has emerged regarding functional neural impairment of all four limbs with a diagnosis of type II diabetes (T2D), there is conflicting evidence regarding impairment in manual function with the disease. The purpose of the current study was to evaluate hand/fingertip function in T2D as compared to healthy age- and gender-matched controls. Ten adults with T2D and ten healthy age- and gender-matched control subjects underwent a battery of clinically validated and laboratory-based evaluations of sensory function, motor function, and quality of life evaluation. The T2D group exhibited sensory dysfunction and altered kinetic output and inconsistent differences in clinically-validated timed performance tasks as compared to age-matched controls. No difference in quality of life was found between the two groups. Sensory dysfunction and some timed evaluations correlated with disease severity. Linear kinetic features did not covary with diminished sensation; however, nonlinear measures did covary with sensation changes. None of the recorded measures were related to clinical diagnosis of peripheral neuropathy. The relationship among exhibited behavioral changes is discussed in terms of small fiber neuropathy, micro-vascular adaptations, and endothelial dysfunction co-occurring with T2D.
The purpose of the study was to explore the ability of the central nervous system (CNS) to organize synergies at two levels of a hypothetical control hierarchy involved in two-hand, multi-finger tasks. We investigated indices (DeltaV) of finger force co-variation across trials as reflections of synergies stabilizing the total force (F (TOT)). Subjects produced constant force with one or two finger-pairs (from one hand or two hands). In trials starting with one finger-pair, subjects added another finger-pair without changing F (TOT). In trials starting with two finger-pairs, subjects removed one of the finger-pairs without changing F (TOT). Adding or removing a finger-pair resulted in a transient drop in DeltaV computed for the finger-pair that remained active throughout the trial. This drop in DeltaV was seen simultaneously with force changes. Compared to the original steady-state, addition of a finger-pair led to a significant drop in DeltaV at the newly established steady-state. This drop eliminated negative co-variation among finger forces that had stabilized F (TOT). In contrast, in trials starting with two finger-pairs, no negative co-variation between finger forces within-a-pair was seen. Removing a finger-pair led to the emergence of negative co-variation between finger forces at the new steady-state. The DeltaV index computed across two finger-pairs confirmed the existence of negative force co-variation. The emergence and disappearance of force stabilizing synergies within a finger-pair may signal limitations in the ability of the CNS in forming synergies at two different hierarchical levels.
Some, not all, motor performance deficits in T2D are associated with sensory dysfunction. Mechanisms responsible for these changes in adult-onset T2D are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.