BackgroundThe molecular chaperone, heat shock protein 90 (Hsp90) has been shown to be overexpressed in a number of cancers, including prostate cancer, making it an important target for drug discovery. Unfortunately, results with N-terminal inhibitors from initial clinical trials have been disappointing, as toxicity and resistance resulting from induction of the heat shock response (HSR) has led to both scheduling and administration concerns. Therefore, Hsp90 inhibitors that do not induce the heat shock response represent a promising new direction for the treatment of prostate cancer. Herein, the development of a C-terminal Hsp90 inhibitor, KU174, is described, which demonstrates anti-cancer activity in prostate cancer cells in the absence of a HSR and describe a novel approach to characterize Hsp90 inhibition in cancer cells.MethodsPC3-MM2 and LNCaP-LN3 cells were used in both direct and indirect in vitro Hsp90 inhibition assays (DARTS, Surface Plasmon Resonance, co-immunoprecipitation, luciferase, Western blot, anti-proliferative, cytotoxicity and size exclusion chromatography) to characterize the effects of KU174 in prostate cancer cells. Pilot in vivo efficacy studies were also conducted with KU174 in PC3-MM2 xenograft studies.ResultsKU174 exhibits robust anti-proliferative and cytotoxic activity along with client protein degradation and disruption of Hsp90 native complexes without induction of a HSR. Furthermore, KU174 demonstrates direct binding to the Hsp90 protein and Hsp90 complexes in cancer cells. In addition, in pilot in-vivo proof-of-concept studies KU174 demonstrates efficacy at 75 mg/kg in a PC3-MM2 rat tumor model.ConclusionsOverall, these findings suggest C-terminal Hsp90 inhibitors have potential as therapeutic agents for the treatment of prostate cancer.
Purpose We determined the activity of heat shock protein (hsp) 90 inhibitor (HI), and/or JAK2 tyrosine kinase inhibitor (TKI) against JAK2-V617F-expressing cultured mouse (Ba/F3-JAK2-V617F) and human (HEL92.1.7 and UKE1) or primary human CD34+ myeloproliferative neoplasm (MPN) cells. Experimental Design Following exposure to the HI AUY922 and/or JAK2-TKI TG101209, the levels of JAK2-V617F, its downstream signaling proteins, as well as apoptosis were determined. Results Treatment with AUY922 induced proteasomal degradation and depletion of JAK2-V617F as well as attenuated the signaling proteins downstream of JAK2-V617F, i.e., phospho (p)-STAT5, p-AKT and p-ERK1/2. AUY922 treatment also induced apoptosis of HEL92.1.7, UKE-1 and Ba/F3-hJAK2-V617F cells. Combined treatment with AUY922 and TG101209 caused greater depletion of the signaling proteins than either agent alone, and synergistically induced apoptosis of HEL92.1.7 and UKE-1 cells. Co-treatment with AUY922 and TG101209 also induced significantly more apoptosis of human CD34+ MPN versus normal hematopoietic progenitor cells. As compared to the sensitive controls, JAK2-TKI-resistant HEL/TGR and UKE1/TGR cells exhibited significantly higher IC50 values for JAK2-TKI (p <0.001), which was associated with higher expression of p-JAK2, p-STAT5, p-AKT and Bcl-xL, but reduced levels of BIM. Unlike the sensitive controls, HEL/TGR and UKE/TGR cells were collaterally sensitive to the HIs AUY922 and 17-AAG; accompanied by marked reduction in p-JAK2, p-STAT5, p-AKT and Bcl-xL, with concomitant induction of BIM. Conclusions Findings presented here demonstrate that co-treatment with HI and JAK2-TKI exerts synergistic activity against cultured and primary MPN cells. Additionally, treatment with HI may overcome resistance to JAK2-TKI in human MPN cells.
Background: Anthracyclines and taxanes are commonly used in the treatment of breast cancer. However, tumor resistance to these drugs often develops, possibly due to overexpression of drug transporters. It remains unclear whether drug resistance in vitro occurs at clinically relevant doses of chemotherapy drugs and whether both the onset and magnitude of drug resistance can be temporally and causally correlated with the enhanced expression and activity of specific drug transporters. To address these issues, MCF-7 cells were selected for survival in increasing concentrations of doxorubicin (MCF-7 DOX-2 ), epirubicin (MCF-7 EPI ), paclitaxel (MCF-7 TAX-2 ), or docetaxel (MCF-7 TXT ). During selection cells were assessed for drug sensitivity, drug uptake, and the expression of various drug transporters.
Histone deacetylase (HDAC) inhibitors (HDI) induce endoplasmic reticulum (ER) stress and apoptosis, while promoting autophagy, which promotes cancer cell survival when apoptosis is compromised. Here, we determined the in vitro and in vivo activity of the combination of the pan-HDI panobinostat and the autophagy inhibitor chloroquine against human estrogen/progesterone receptor and HER2 (triple)-negative breast cancer (TNBC) cells. Treatment of MB-231 and SUM159PT cells with panobinostat disrupted the hsp90/histone deacetylase 6/HSF1/p97 complex, resulting in the upregulation of hsp. This was accompanied by the induction of enhanced autophagic flux as evidenced by increased expression of LC3B-II and the degradation of the autophagic substrate p62. Treatment with panobinostat also induced the accumulation and colocalization of p62 with LC3B-II in cytosolic foci as evidenced by immunofluorescent confocal microscopy. Inhibition of panobinostat-induced autophagic flux by chloroquine markedly induced the accumulation of polyubiquitylated proteins and p62, caused synergistic cell death of MB-231 and SUM159PT cells, and inhibited mammosphere formation in MB-231 cells, compared with treatment with each agent alone. Finally, in mouse mammary fat pad xenografts of MB-231 cells, a tumor size-dependent induction of heat shock response, ER stress and autophagy were observed. Cotreatment with panobinostat and chloroquine resulted in reduced tumor burden and increased the survival of MB-231 breast cancer xenografts. Collectively, our findings show that cotreatment with an autophagy inhibitor and pan-HDI, for example, chloroquine and panobinostat results in accumulation of toxic polyubiquitylated proteins, exerts superior inhibitory effects on TNBC cell growth, and increases the survival of TNBC xenografts. Mol Cancer Ther; 11(4); 973-83. Ó2012 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.