The proto-oncogene c-Myc paradoxically activates both proliferation and apoptosis. In the pathogenic state, c-Myc-induced apoptosis is bypassed via a critical, yet poorly understood escape mechanism that promotes cel-
Chromosomal instability is a characteristic feature of hepatocellular carcinoma (HCC) but its origin and role in liver carcinogenesis are undefined. We tested whether a defect in the nonhomologous end-joining (NHEJ) DNA repair gene Ku70 was associated with chromosomal abnormalities and enhanced liver carcinogenesis. Male Ku70 NHEJ-deficient (Ku70؊/؊), heterozygote (Ku70 ؉/؊), and wild-type (WT) mice were injected with diethylnitrosamine (DEN), a liver carcinogen, at age 15 days. Animals were killed at 3, 6, and 9 months for assessment of tumorigenesis and hepatocellular proliferation. For karyotype analysis, primary liver tumor cell cultures were prepared from HCCs arising in Ku70 mice of all genotypes. Compared to WT littermates, Ku70؊/؊ mice injected with DEN displayed accelerated HCC development. Ku70؊/؊ HCCs harbored clonal increases in numerical and structural aberrations of chromosomes 4, 5, 7, 8, 10, 14, and 19, many of which recapitulated the spectrum of equivalent chromosomal abnormalities observed in human HCC. Ku70؊/؊ HCCs showed high proliferative activity with increased cyclin D1 and proliferating cell nuclear antigen expression, Aurora A kinase activity, enhanced ataxia telangiectasia mutated kinase and ubiquitination, and loss of p53 via proteasomal degradation, features which closely resemble those of human HCC. Conclusion: These findings demonstrate that defects in the NHEJ DNA repair pathway may participate in the disruption of cell cycle checkpoints leading to chromosomal instability and accelerated development of HCC. (HEPATOLOGY 2008;47
The tumor microenvironment is characterized by deficiencies in oxygen and nutrients, such as glucose and amino acids. Activation of the GCN2 arm of the Integrated Stress Response (ISR) in response to amino acid deprivation is one mechanism by which tumor cells cope with nutrient stress. GCN2 phosphorylates the alpha subunit of the eukaryotic translation initiation factor eIF2, leading to global downregulation of translation to conserve amino acids and initiation of a transcriptional program through ATF4 to promote recovery from nutrient deprivation. Loss of GCN2 results in decreased tumor cell survival in vitro under amino acid deprivation and attenuated tumor growth in xenograft tumor models. However, it is not known what effects GCN2 loss has on the growth of autochthonous tumors that arise in their native microenvironment. Here, we demonstrate in a genetically engineered mouse model of soft tissue sarcoma that loss of GCN2 has no effect on tumor growth or animal survival. The sarcomas displayed compensatory activation of PERK or phospho-eIF2α independent upregulation of ATF4 in order to maintain ISR signaling, indicating that this pathway is critical for tumorigenesis. These results have important implications for the development and testing of small molecule inhibitors of ISR kinases as cancer therapeutics.
Multiple transcripts encode for the cell cycle inhibitor p21Cip1. These transcripts produce identical proteins but differ in their 5’ untranslated regions (UTRs). Although several stresses that induce p21 have been characterized, the mechanisms regulating the individual transcript variants and their functional significance are unknown. Here we demonstrate through 35S labeling, luciferase reporter assays, and polysome transcript profiling that activation of the Integrated Stress Response (ISR) kinase GCN2 selectively upregulates the translation of a p21 transcript variant containing 5’ upstream open reading frames (uORFs) through phosphorylation of the eukaryotic translation initiation factor eIF2α. Mutational analysis reveals that the uORFs suppress translation under basal conditions, but promote translation under stress. Functionally, ablation of p21 ameliorates G1/S arrest and reduces cell survival in response to GCN2 activation. These findings uncover a novel mechanism of p21 post-transcriptional regulation, offer functional significance for the existence of multiple p21 transcripts, and support a key role for GCN2 in regulating the cell cycle under stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.