Activated CD8+ T cells differentiate into cytotoxic effector (TEFF) cells that eliminate target cells. How TEFF cell identity is established and maintained remains less understood. Here we show Runx3 deficiency limits clonal expansion and impairs upregulation of cytotoxic molecules in TEFF cells. Runx3-deficient CD8+ TEFF cells aberrantly upregulate genes characteristic of follicular helper T (TFH) cell lineage, including Bcl6, Tcf7 and Cxcr5. Mechanistically, the Runx3-CBFβ complex deploys H3K27me3 to Bcl6 and Tcf7 genes to suppress the TFH program. Ablating Tcf7 in Runx3-deficient CD8+ TEFF cells prevents the upregulation of TFH genes and ameliorates their defective induction of cytotoxic genes. As such, Runx3-mediated Tcf7 repression coordinately enforces acquisition of cytotoxic functions and protects the cytotoxic lineage integrity by preventing TFH-lineage deviation.
Memory CD8 T cells can provide protection from re-infection by respiratory viruses such as influenza and SARS. However, the relative contribution of memory CD8 T cells in providing protection against respiratory syncytial virus (RSV) infection is currently unclear. To address this knowledge gap, we utilized a prime-boost immunization approach to induce robust memory CD8 T cell responses in the absence of RSV-specific CD4 T cells and antibodies. Unexpectedly, RSV infection of mice with pre-existing CD8 T cell memory led to exacerbated weight loss, pulmonary disease, and lethal immunopathology. The exacerbated disease in immunized mice was not epitope-dependent and occurred despite a significant reduction in RSV viral titers. In addition, the lethal immunopathology was unique to the context of an RSV infection as mice were protected from a normally lethal challenge with a recombinant influenza virus expressing an RSV epitope. Memory CD8 T cells rapidly produced IFN-γ following RSV infection resulting in elevated protein levels in the lung and periphery. Neutralization of IFN-γ in the respiratory tract reduced morbidity and prevented mortality. These results demonstrate that in contrast to other respiratory viruses, RSV-specific memory CD8 T cells can induce lethal immunopathology despite mediating enhanced viral clearance.
There is no currently licensed vaccine for respiratory syncytial virus (RSV) despite being the leading cause of lower respiratory tract infections in children. Children previously immunized with a formalin-inactivated RSV (FI-RSV) vaccine exhibited enhanced respiratory disease following natural RSV infection. Subsequent studies in animal models have implicated roles for CD4 T cells, eosinophils and non-neutralizing antibodies in mediating enhanced respiratory disease. However, the underlying immunological mechanisms responsible for the enhanced respiratory disease and other disease manifestations associated with FI-RSV vaccine-enhanced disease remain unclear. We demonstrate for the first time that while CD4 T cells mediate all aspects of vaccine-enhanced disease, distinct CD4 T cell subsets orchestrate discrete and specific disease parameters. A Th2-biased immune response, but not eosinophils specifically, was required for airway hyperreactivity and mucus hypersecretion. In contrast, the Th1-associated cytokine TNF-α was necessary to mediate airway obstruction and weight loss. Our data demonstrate that individual disease manifestations associated with FI-RSV vaccine-enhanced disease are mediated by distinct subsets of CD4 T cells.
Intranasal mouse hepatitis virus type 1 (MHV-1) infection of mice induces lung pathology similar to that observed in severe acute respiratory syndrome (SARS) patients. However, the severity of MHV-1-induced pulmonary disease varies among mouse strains, and it has been suggested that differences in the host immune response might account for this variation. It has also been suggested that immunopathology may represent an important clinical feature of SARS. Little is known about the host immune response to MHV-1 and how it might contribute to some of the pathological changes detected in infected mice. In this study we show that an intact type I interferon system and the adaptive immune responses are required for controlling MHV-1 replication and preventing morbidity and mortality in resistant C57BL/6J mice after infection. The NK cell response also helps minimize the severity of illness following MHV-1 infection of C57BL/6J mice. In A/J and C3H/HeJ mice, which are highly susceptible to MHV-1-induced disease, we demonstrate that both CD4 and CD8 T cells contribute to morbidity during primary infection, and memory responses can enhance morbidity and mortality during subsequent reexposure to MHV-1. However, morbidity in A/J and C3H/HeJ mice can be minimized by treating them with immune serum prior to MHV-1 infection. Overall, our findings highlight the role of the host immune response in contributing to the pathogenesis of coronavirus-induced respiratory disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.