This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
There has been a rapid evolution of satellites, sensors, and techniques to measure, monitor, and manage terrestrial protected areas. There are over 100,000 protected areas around the world and most lack important information on the status and trends of natural resource issues. We review advances and limitations in spaceborne remote sensing that can be applied to all terrestrial protected areas around the world. There have been significant advances in baseline vegetation mapping and land cover classifications by combining field data, data from multiple sensors, and classification techniques. However, global classifications on the extent of non-forest vegetation types (e.g. grasslands and shrublands) are still needed at 30 m pixel resolution. High spatial (< 1 m) and spectral (220 bands) resolution sensors have provided important data on environmental issues (e.g. invasive species, degradation) that are region or site specific. Advances in monitoring protected areas have primarily focused on forest ecosystems and land cover dynamics in and around protected areas using time series data. Landsat imagery can be used to monitor vegetation extent and dynamics at 30 m pixel resolution across the globe, while the MODIS sensors are more appropriate for monthly updates on trends of ecosystem health in protected areas. There has also been an increase in time series remote sensing datasets on anthropogenic impacts, such as light pollution, fire, and land surface temperature, that can be used for all protected areas. Future geographic research should focus on developing global protocols and incorporating near real time and annual metrics that can easily be used by natural resource managers to assess the status and trends of all protected areas.
BackgroundFree-ranging horses (Equus caballus) in North America are considered to be feral animals since they are descendents of non-native domestic horses introduced to the continent. We conducted a study in a southern California desert to understand how feral horse movements and horse feces impacted this arid ecosystem. We evaluated five parameters susceptible to horse trampling: soil strength, vegetation cover, percent of nonnative vegetation, plant species diversity, and macroinvertebrate abundance. We also tested whether or not plant cover and species diversity were affected by the presence of horse feces.ResultsHorse trailing resulted in reduced vegetation cover, compacted soils, and in cases of intermediate intensity disturbance, increased plant species diversity. The presence of horse feces did not affect plant cover, but it did increase native plant diversity.ConclusionAdverse impacts, such as soil compaction and increased erosion potential, were limited to established horse trails. In contrast, increased native plant diversity near trails and feces could be viewed as positive outcomes. Extensive trailing can result in a surprisingly large impact area: we estimate that < 30 horses used > 25 km2 of trails in our study area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.