Over the past decade, emoji have emerged as a new and widespread form of digital communication, spanning diverse social networks and spoken languages. We propose to treat these ideograms as a new modality in their own right, distinct in their semantic structure from both the text in which they are often embedded as well as the images which they resemble. As a new modality, emoji present rich novel possibilities for representation and interaction. In this paper, we explore the challenges that arise naturally from considering the emoji modality through the lens of multimedia research. Specifically, the ways in which emoji can be related to other common modalities such as text and images. To do so, we first present a large scale dataset of real-world emoji usage collected from Twitter. This dataset contains examples of both text-emoji and image-emoji relationships. We present baseline results on the challenge of predicting emoji from both text and images, using state-of-the-art neural networks. Further, we offer a first consideration into the problem of how to account for new, unseen emoji -a relevant issue as the emoji vocabulary continues to expand on a yearly basis. Finally, we present results for multimedia retrieval using emoji as queries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.