Background: 22q11.2 deletion syndrome (22q11.2DS) is caused by recurrent, chromosome specific, low copy repeat mediated copy number losses of chromosome 22q11. The Children’s Hospital of Philadelphia has been involved in the clinical care of individuals with what is now known as 22q11.2DS since our initial report of the association with DiGeorge syndrome in 1982. Methods: We reviewed the medical records on our continuously growing longitudinal cohort of 1,421 patients with molecularly confirmed 22q11.2DS from 1992 to 2018. Results: Most individuals are Caucasian and older than eight years old. The median age at diagnosis was 360 days. The majority of patients (85%) had typical LCR22A-LCR22D deletions, and only 7% of these typical deletions were inherited from a parent harboring the deletion constitutionally. However, 6% of individuals harbored other nested deletions that would not be identified by traditional 22q11.2 FISH, thus requiring an orthogonal technology to diagnose. Major medical problems included immune dysfunction or allergies (77%), palatal abnormalities (67%), congenital heart disease (64%), gastrointestinal difficulties (65%), endocrine dysfunction (>50%), scoliosis (50%), renal anomalies (16%), and airway abnormalities. Median full-scale IQ was 76, with no significant difference between individuals with and without congenital heart disease or hypocalcemia. Characteristic dysmorphic facial features were present in most, but dermatoglyphic patterns of our cohort are similar to normal controls. Conclusions: This is the largest longitudinal study of patients with 22q11.2DS, helping to further describe the condition and aid in diagnosis and management. Further surveillance will likely elucidate additional clinically relevant findings as they age.
Human WNT10A mutations are associated with developmental tooth abnormalities and adolescent onset of a broad range of ectodermal defects. Here we show that β-catenin pathway activity and adult epithelial progenitor proliferation are reduced in the absence of WNT10A, and identify Wnt-active self-renewing stem cells in affected tissues including hair follicles, sebaceous glands, taste buds, nails and sweat ducts. Human and mouse WNT10A mutant palmoplantar and tongue epithelia also display specific differentiation defects that are mimicked by loss of the transcription factor KLF4. We find that β-catenin interacts directly with region-specific LEF/TCF factors, and with KLF4 in differentiating, but not proliferating, cells to promote expression of specialized keratins required for normal tissue structure and integrity. Our data identify WNT10A as a critical ligand controlling adult epithelial proliferation and region-specific differentiation, and suggest downstream β-catenin pathway activation as a potential approach to ameliorate regenerative defects in WNT10A patients.
Wiedemann‐Steiner syndrome (WSS) is an autosomal dominant disorder caused by monoallelic variants in KMT2A and characterized by intellectual disability and hypertrichosis. We performed a retrospective, multicenter, observational study of 104 individuals with WSS from five continents to characterize the clinical and molecular spectrum of WSS in diverse populations, to identify physical features that may be more prevalent in White versus Black Indigenous People of Color individuals, to delineate genotype–phenotype correlations, to define developmental milestones, to describe the syndrome through adulthood, and to examine clinicians' differential diagnoses. Sixty‐nine of the 82 variants (84%) observed in the study were not previously reported in the literature. Common clinical features identified in the cohort included: developmental delay or intellectual disability (97%), constipation (63.8%), failure to thrive (67.7%), feeding difficulties (66.3%), hypertrichosis cubiti (57%), short stature (57.8%), and vertebral anomalies (46.9%). The median ages at walking and first words were 20 months and 18 months, respectively. Hypotonia was associated with loss of function (LoF) variants, and seizures were associated with non‐LoF variants. This study identifies genotype–phenotype correlations as well as race‐facial feature associations in an ethnically diverse cohort, and accurately defines developmental trajectories, medical comorbidities, and long‐term outcomes in individuals with WSS.
The primary accumulating metabolites in fatty acid oxidation defects are intramitochondrial acyl-CoAs. Typically, secondary metabolites such as acylcarnitines, acylglycines and dicarboxylic acids are measured to study these disorders. Methods have not been adapted for tissue acyl-CoA measurement in defects with primarily acyl-CoA accumulation. Our objective was to develop a method to measure fatty acyl-CoA species that are present in tissues of mice with fatty acid oxidation defects using flow-injection tandem mass spectrometry. Following the addition of internal standards of [13C2] acetyl-CoA, [13C8] octanoyl-CoA, and [C17] heptadecanoic CoA, acyl-CoA’s are extracted from tissue samples and are injected directly into the mass spectrometer. Data is acquired using a 506.9 neutral loss scan and multiple reaction-monitoring (MRM). This method can identify all long, medium and short-chain acyl-CoA species in wild type mouse liver including predicted 3-hydroxyacyl-CoA species. We validated the method using liver of the short-chain-acyl-CoA dehydrogenase (SCAD) knock-out mice. As expected, there is a significant increase in [C4] butyryl-CoA species in the SCAD −/− mouse liver compared to wild type. We then tested the assay in liver from the short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD) deficient mice to determine the profile of acyl-CoA accumulation in this less predictable model. There was more modest accumulation of medium chain species including 3-hydroxyacyl-CoA’s consistent with the known chain-length specificity of the SCHAD enzyme.
Ehlers-Danlos syndromes (EDSs) are a group of inherited connective tissue disorders, and among them, classical EDS (cEDS) and hypermobile EDS (hEDS) are the most common. Mitral valve prolapse (MVP) and aortic root dilation (ARD) have previously been reported to occur at an increased frequency within cEDS and hEDS. More recently, a study performed in the pediatric population did not show increased prevalence (Ritter et al., American Journal of Medical Genetics Part A, 173(6), 1467-1472, 2017). The purpose of this study was to review a large population of individuals with cEDS, hEDS, and hypermobility spectrum disorders to determine the frequency of MVP and ARD. A retrospective chart review of 209 individuals with echocardiograms was performed. Overall, 6.4% (13/209) had MVP and 1.6% (3/189) were found to have ARD. Although the presence of MVP is higher than what has been reported in the general population, no patients had severe MVP or required surgical intervention. No patients in this cohort had an aortic root diameter requiring surgical repair. Based on the results of this study and previous studies, routine echocardiograms to assess for valvular diseases and ARD may not be necessary unless warranted by presence of symptoms or family history.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.