Polyglutamine (polygln) diseases are a group of inherited neurodegenerative disorders characterized by protein misfolding and aggregation. Here, we investigate the role in polygln disease of heat shock proteins (Hsps), the major class of molecular chaperones responsible for modulating protein folding in the cell. In transfected COS7 and PC12 neural cells, we show that Hsp40 and Hsp70 chaperones localize to intranuclear aggregates formed by either mutant ataxin-3, the disease protein in spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD), or an unrelated green fluorescent protein fusion protein containing expanded polygln. We further demonstrate that expression of expanded polygln protein elicits a stress response in cells as manifested by marked induction of Hsp70. Studies of SCA3/MJD disease brain confirm these findings, showing localization of Hsp40 and, less commonly, Hsp70 chaperones to intranuclear ataxin-3 aggregates. In transfected cells, overexpression of either of two Hsp40 chaperones, the DNAJ protein homologs HDJ-1 and HDJ-2, suppresses aggregation of truncated or full-length mutant ataxin-3. Finally, we extend these studies to a PC12 neural model of polygln toxicity in which we demonstrate that overexpression of HDJ-1 suppresses polygln aggregation with a parallel decrease in toxicity. These results suggest that expanded polygln protein induces a stress response and that specific molecular chaperones may aid the handling of misfolded or aggregated polygln protein in neurons. This study has therapeutic implications because it suggests that efforts to increase chaperone activity may prove beneficial in this class of diseases.
Spinocerebellar ataxia type 3, also known as Machado-Joseph disease (SCA3/MJD), is one of at least eight inherited neurodegenerative diseases caused by expansion of a polyglutamine tract in the disease protein. Here we present two lines of evidence implicating the ubiquitin-proteasome pathway in SCA3/MJD pathogenesis. First, studies of both human disease tissue and in vitro models showed redistribution of the 26S proteasome complex into polyglutamine aggregates. In neurons from SCA3/MJD brain, the proteasome localized to intranuclear inclusions containing the mutant protein, ataxin-3. In transfected cells, the proteasome redistributed into inclusions formed by three expanded polyglutamine proteins: a pathologic ataxin-3 fragment, full-length mutant ataxin-3 and an unrelated GFP-polyglutamine fusion protein. Inclusion formation by the full-length mutant ataxin-3 required nuclear localization of the protein and occurred within specific subnuclear structures recently implicated in the regulation of cell death, promyelocytic leukemia antigen oncogenic domains. In a second set of experiments, inhibitors of the proteasome caused a repeat length-dependent increase in aggregate formation, implying that the proteasome plays a direct role in suppressing polyglutamine aggregation in disease. These results support a central role for protein misfolding in the pathogenesis of SCA3/MJD and suggest that modulating proteasome activity is a potential approach to altering the progression of this and other polyglutamine diseases.
The offspring of diabetic mothers (ODM) have an increased risk of developing metabolic and cardiovascular dysfunction. However, few studies have focused on susceptibility to disease in offspring of mothers developing diabetes during pregnancy. We developed an animal model of late-gestation diabetic pregnancy and characterized metabolic and vascular function in the offspring. Diabetes was induced by streptozotocin (50 mg/kg, i.p.) in pregnant rats on gestational day 13 and partially controlled by twice-daily injections of insulin. At 2 months of age, ODM had slightly better glucose tolerance than controls (p < 0.05), however, by 6 months of age this trend reversed. Hyperinsulinemic-euglycemic clamp revealed insulin resistance in male ODM (p < 0.05). In 6-8 mo old female ODM, aortas showed significantly enhanced contractility to potassium chloride (KCl), endothelin-1 (ET-1) and noradrenaline (NA). No differences in responses to endothelin-1 and noradrenaline were apparent with co-administration of NG-nitro-L-arginine (L-NNA). Relaxation to acetylcholine but not nitroprusside was significantly impaired in female ODM. In contrast, males displayed no between group differences in response to vasoconstrictors while relaxation to nitroprusside and acetylcholine was greater in ODM compared to control animals. Thus, development of diabetes during pregnancy programs gender specific insulin resistance and vascular dysfunction in adult offspring.
Inhibition of ribonucleotide reductase (RNR), the rate-limiting enzyme in the synthesis of deoxyribonucleotides, causes DNA replication stress and activates the ATR-CHK1 pathway. Notably, a number of different cancers, including Ewing sarcoma tumors, are sensitive to the combination of RNR and ATR-CHK1 inhibitors. However, multiple, overlapping mechanisms are reported to underlie the toxicity of ATR-CHK1 inhibitors, both as single-agents and in combination with RNR inhibitors, toward cancer cells. Here, we identified a feedback loop in Ewing sarcoma cells in which inhibition of the ATR-CHK1 pathway depletes RRM2, the small subunit of RNR, and exacerbates the DNA replication stress and DNA damage caused by RNR inhibitors. Mechanistically, we identified that the inhibition of ATR-CHK1 activates CDK2, which targets RRM2 for degradation via the proteasome. Similarly, activation of CDK2 by inhibition or knockdown of the WEE1 kinase also depletes RRM2 and causes DNA damage and apoptosis. Moreover, we show that the concurrent inhibition of ATR and WEE1 has a synergistic effect in Ewing sarcoma cells. Overall, our results provide novel insight into the response to DNA replication stress, as well as a rationale for targeting the ATR, CHK1, and WEE1 pathways, in Ewing sarcoma tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.