Del Nido cardioplegic solution has the potential to provide superior myocardial protection in senescent hearts by preventing electromechanical activity during cardioplegic arrest and Ca(2+)-induced hypercontraction during early reperfusion.
Del Nido cardioplegia prevents spontaneous contractions during arrest, reduces troponin release, and results in superior myocardial function in isolated aged hearts. Del Nido cardioplegia has the potential to provide superior myocardial protection for older patients undergoing cardiac surgery.
Closure of the ductus arteriosus requires prenatal formation of intimal cushions, which occlude the vessel lumen at birth. Survival of newborns with severe congenital heart defects, however, depends on ductal patency. We used a gene transfer approach to create a patent ductus arteriosus by targeting the fibronectin-dependent smooth muscle cell migration required for intimal cushion formation. Fetal lamb ductus arteriosus was transfected in utero with hemagglutinating virus of Japan liposomes containing plasmid encoding 'decoy' RNA to sequester the fibronectin mRNA binding protein. Fibronectin translation was inhibited and intimal cushion formation was prevented. We thus established the essential role of fibronectin-dependent smooth muscle cell migration in intimal cushion formation in the intact animal and the feasibility of incorporating biological engineering in the management of congenital heart disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.