The dynamics of SARS-CoV-2 replication and shedding in humans remain poorly understood. We captured the dynamics of infectious virus and viral RNA shedding during acute infection through daily longitudinal sampling of 60 individuals for up to 14 days. By fitting mechanistic models, we directly estimated viral expansion and clearance rates, and overall infectiousness for each individual. Significant person-to-person variation in infectious virus shedding suggests that individual-level heterogeneity in viral dynamics contributes to superspreading. Viral genome loads often peaked days earlier in saliva than in nasal swabs, indicating strong tissue compartmentalization and suggesting that saliva may serve as a superior sampling site for early detection of infection. Viral loads and clearance kinetics of Alpha (B.1.1.7) and previously circulating non-variant of concern viruses were mostly indistinguishable, indicating that the enhanced transmissibility of this variant cannot be simply explained by higher viral loads or delayed clearance. These results provide a high-resolution portrait of SARS-CoV-2 infection dynamics and implicate individual-level heterogeneity in infectiousness in superspreading.
Background Serial screening is critical for restricting spread of SARS-CoV-2 by facilitating the timely identification of infected individuals to interrupt transmission chains. The variation in sensitivity of different diagnostic tests at different stages of infection has not been well documented. Methods This is a longitudinal study of 43 adults newly infected with SARS-CoV-2. All participants provided daily samples for saliva and nasal swab RTqPCR, Quidel SARS Sofia antigen FIA, and live virus culture. Results We show that both RTqPCR and the Quidel SARS Sofia antigen FIA peak in sensitivity during the period in which live virus is detected in nasal swabs, but the sensitivity of RTqPCR tests rises more rapidly prior to this period. We also estimate the sensitivities of RTqPCR and antigen tests as a function of testing frequency. Conclusions RTqPCR tests are more effective than antigen tests at identifying infected individuals prior to or early during the infectious period and thus for minimizing forward transmission (given timely results reporting). All tests showed >98% sensitivity for identifying infected individuals if used at least every three days. Daily screening using antigen tests can achieve ~90% sensitivity for identifying infected individuals while they are viral culture positive.
What is already known about this topic? Diagnostic tests and sample types for SARS-CoV-2 vary in sensitivity across the infection period. What is added by this report? We show that both RTqPCR (from nasal swab and saliva) and the Quidel SARS Sofia FIA rapid antigen tests peak in sensitivity during the period in which live virus can be detected in nasal swabs, but that the sensitivity of RTqPCR tests rises more rapidly in the pre-infectious period. We also use empirical data to estimate the sensitivities of RTqPCR and antigen tests as a function of testing frequency. What are the implications for public health practice? RTqPCR tests will be more effective than rapid antigen tests at identifying infected individuals prior to or early during the infectious period and thus for minimizing forward transmission (provided results reporting is timely). All modalities, including rapid antigen tests, showed >94% sensitivity to detect infection if used at least twice per week. Regular surveillance/screening using rapid antigen tests 2-3 times per week can be an effective strategy to achieve high sensitivity (>95%) for identifying infected individuals.
The dynamics of SARS-CoV-2 replication and shedding in humans remain poorly understood. We captured the dynamics of infectious virus and viral RNA shedding during acute infection through daily longitudinal sampling of 60 individuals for up to 14 days. By fitting mechanistic models, we directly estimate viral reproduction and clearance rates, and overall infectiousness for each individual. Significant person-to-person variation in infectious virus shedding suggests that individual-level heterogeneity in viral dynamics contributes to superspreading. Viral genome load often peaked days earlier in saliva than in nasal swabs, indicating strong compartmentalization and suggesting that saliva may serve as a superior sampling site for early detection of infection. Viral loads and clearance kinetics of B.1.1.7 and non-B.1.1.7 viruses in nasal swabs were indistinguishable, however B.1.1.7 exhibited a significantly slower pre-peak growth rate in saliva. These results provide a high-resolution portrait of SARS-CoV-2 infection dynamics and implicate individual-level heterogeneity in infectiousness in superspreading.
Energy retrofits can reduce air exchange, raising the concern of whether indoor radon and moisture levels could increase. This pre/post‐intervention study explored whether simple radon interventions implemented in conjunction with energy retrofits can prevent increases in radon and moisture levels. Treatment homes (n = 98) were matched with control (no energy retrofits or radon intervention) homes (n = 12). Control homes were matched by geographic location and foundation type. t‐tests were used to determine whether post‐energy retrofit radon and moisture level changes in treatment homes significantly differed from those in control homes. The radon interventions succeeded in preventing statistically significant increases in first floor radon using arithmetic (p = 0.749) and geometric means (p = 0.120). In basements, arithmetic (p = 0.060) and geometric (p = 0.092) mean radon levels statistically significantly increased, consistent with previous studies which found that basement radon levels may increase even if first floor levels remain unchanged. Changes in infiltration were related to changes in radon (p = 0.057 in basements; p = 0.066 on first floors). Only 58% of the change in infiltration was due to air sealing, with the rest due to weather changes. There was no statistically significant association between air sealing itself and radon levels on the first floor (p = 0.664). Moisture levels also did not significantly increase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.