Research combining the areas of separation science and microfluidics has gained popularity, driven by the increasing need to create portable, fast, and low analyte-consumption devices. Much of this research has focused on the developments in electrophoretic separations, which use the electrokinetic properties of analytes to overcome many of the problems encountered during system scale-down. In addition, new physical phenomenon can be exploited on the microscale not available in standard techniques. In this study, the innovative developments, including electrophoretic concentration, sample preparation/conditioning, and separation on-chip are reviewed, along with some introductory discussions, from January 2008 to July 2010.
Determination of the physicochemical properties of protein therapeutics and their aggregates is critical for developing formulations that enhance product efficacy, stability, safety and manufacturability. Analytical challenges are compounded for materials: (1) that are formulated at high concentration, (2) that are formulated with a variety of excipients, and (3) that are available only in small volumes. In this article, a new instrument is described that measures protein secondary and tertiary structure, as well as molecular size, over a range of concentrations and formulation conditions of low volume samples. Specifically, characterization of colloidal and conformational stability is obtained through a combination of two well-established analytical techniques: dynamic light scattering (DLS) and Raman spectroscopy, respectively. As the data for these two analytical modalities are collected on the same sample at the same time, the technique enables direct correlation between them, in addition to the more straightforward benefit of minimizing sample usage by providing multiple analytical measurements on the same aliquot non-destructively. The ability to differentiate between unfolding and aggregation that the combination of these techniques provides enables insights OPEN ACCESSMolecules 2014, 19 20889 into underlying protein aggregation mechanisms. The article will report on mechanistic insights for aggregation that have been obtained from the application of this technique to the characterization of lysozyme, which was evaluated as a function of concentration and pH.
A novel method capable of differentiating and concentrating small molecules in bulk solution termed "electrophoretic exclusion" is described and experimentally investigated. In this technique, the hydrodynamic flow of the system is countered by the electrophoretic velocity to prevent a species from entering into the channel. The separation can be controlled by changing the flow rate or applied electric field in order to exclude certain species selectively while allowing others to pass through the capillary. Proof of principle studies employed a flow injection regime of the method and examined the exclusion of Methyl Violet dye in the presence of a neutral species. Methyl Violet was concentrated almost 40 times the background concentration in 30 s using 6 kV. Additionally, a threshold voltage necessary for exclusion was determined. The establishment of a threshold voltage enabled the differentiation of two similar cationic species: Methyl Green and Neutral Red.
Nitric oxide (NO) is quantitatively determined in platelets prior to, and after, stimulation with adenosine triphosphate (ATP) or activation with adenosine diphosphate (ADP). Platelets obtained from the whole blood of rabbits were loaded with the fluorescence probe diaminodifluorofluorescein diacetate (DAF-FM DA), and the subsequent NO production was measured as a fluorescent benzotriazole. Experiments were performed to determine the effect of probe concentration and probe incubation time in the platelets prior to measurement of the fluorescence. This information, combined with the method of multiple standard additions, was then employed to determine the moles of intracellular NO in the platelets (2.7 +/- 0.3) x 10(-16) mol of NO/platelet and the basal level of extracellular NO in the platelet sample (9.9 +/- 2.2) x 10(-18) mol of NO/platelet. Moreover, this method was used to quantitatively determine the amount of NO released from platelets whose NO production was stimulated with ATP (a nitric oxide synthase stimulus) or ADP, a substance known to result in NO production through platelet aggregation. When stimulated with ATP, the NO released from the platelets was determined to be (2.0 +/- 0.1) x 10(-17) mol of NO/platelet. When activated with ADP, the platelets released (2.8 +/- 0.3) x 10(-17) mol of NO/platelet. The difference between the extracellular basal levels of NO and that after stimulation with either ATP or ADP is in agreement with current estimates of NO release from platelets. Therefore, we conclude that a fluorescence determination of NO using the DAF family of probes, in combination with the method of multiple standard additions, can be employed to quantitatively determine the basal levels of NO in platelets, as well as the amount of NO released from stimulated and/or activated platelets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.