BackgroundEquine coronavirus (ECoV) is associated with clinical disease in adult horses. Outbreaks are associated with a low case fatality rate and a small number of animals with signs of encephalopathic disease are described.ObjectivesThe aim of this study is to describe the epidemiological and clinical features of two outbreaks of ECoV infection that were associated with an high case fatality rate.Animals14 miniature horses and 1 miniature donkey testing fecal positive for ECoV from two related disease outbreaks.MethodsRetrospective study describing the epidemiological findings, clinicopathological findings, and fecal viral load from affected horses.ResultsIn EcoV positive horses, 27% (4/15) of the animals died or were euthanized. Severe hyperammonemia (677 μmol/L, reference range ≤60 μmol/L) was identified in one animal with signs of encephalopathic disease that subsequently died. Fecal viral load (ECoV genome equivalents per gram of feces) was significantly higher in the nonsurvivors compared to animals that survived (P = .02).Conclusions and Clinical ImportanceEquine coronavirus had a higher case fatality rate in this group of miniature horses than previously reported in other outbreaks of varying breeds. Hyperammonemia could contribute to signs of encephalopathic disease, and the fecal viral load might be of prognostic value in affected horses.
A recently published article described the safety, tolerability, and pharmacokinetic profile of molnupiravir (Painter et al. 2021), a novel antiviral agent with potent activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19). Here, we report an unprecedented collaboration between sponsor, contract research organization (CRO), and regulatory authorities that enabled accelerated generation of these phase I data, including administration of the first-in-human (FIH) dose of molnupiravir within 5 days of receiving regulatory approval in the United Kingdom (UK). Single and multiple ascending dose (SAD and MAD, respectively) cohorts were dosed in randomized, double-blind, and placebo-controlled fashion, with a 6:2 active-to-placebo ratio in each cohort. A food-effect (FE) cohort included 10 subjects who were randomized to receive drug in the fasted or fed state followed by the fed or fasted state to complete a fed and fasted sequence for each subject. Dose escalation decisions were accelerated and MAD cohorts were initiated prior to completion of all SAD cohorts with the provision that the total daily dose in a MAD cohort would not exceed a dose proven to be safe and well-tolerated in a SAD cohort. Dosing in healthy volunteers was completed for eight single ascending dose (SAD) cohorts, seven multiple ascending dose (MAD) cohorts, and one food-effect (FE) cohort within approximately 16 weeks of initial protocol submission to the Research Ethics Committee (REC) and Medicines and Healthcare products Regulatory Agency (MHRA). Working to standard industry timelines, the FIH study would have taken approximately 46 weeks to complete and 33 weeks to enable phase 2 dosing. Data from this study supported submission of a phase 2/3 clinical trial protocol to the US Food and Drug Administration (FDA) within 8 weeks of initial protocol submission, with FDA comments permitting phase 2 study initiation within two additional weeks. In the setting of a global pandemic, this model of collaboration allows for accelerated generation of clinical data compared to standard processes, without compromising safety.
A recently published article described the safety, tolerability and pharmacokinetic profile of molnupiravir, a novel antiviral agent with potent activity against SARS-CoV-2, the causative agent of COVID-19. Here, we report an unprecedented collaboration between sponsor, contract research organization (CRO) and regulatory authorities that enabled accelerated generation of these phase I data, including administration of the first-in-human (FIH) dose of molnupiravir within 5 days of receiving approval from the Research Ethics Committee (REC) and the Medicines and Healthcare products Regulatory Agency (MHRA) in the United Kingdom (UK). Frequent, direct communication with regulatory authorities and parallel, streamlined sponsor-CRO working groups facilitated this accelerated timeline. Dosing in healthy volunteers was completed for eight single ascending dose (SAD) cohorts, seven multiple ascending dose (MAD) cohorts, and one food-effect (FE) cohort within approximately 16 weeks of initial protocol submission to the REC and MHRA. Working to standard industry timelines, the FIH study would have normally taken approximately 46 weeks to complete and 33 weeks to enable Phase 2 dosing. Data from this study supported submission of a Phase 2/3 clinical trial protocol to the US Food and Drug Administration (FDA) within eight weeks of initial protocol submission, with FDA comments permitting phase 2 study initiation within two additional weeks. In the setting of a global pandemic, this model of collaboration allows for accelerated generation of clinical data compared to standard processes, without compromising safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.