During early human pregnancy, the fetal placenta implants into the uterine mucosa (decidua)where placental trophoblast cells intermingle and communicate with maternal cells. Trophoblastdecidual interactions underlie common diseases of pregnancy including pre-eclampsia and stillbirth. Here, we profile transcriptomes of ~70,000 single cells from first trimester placentas with matched maternal blood and decidual cells. The cellular composition of human decidua reveals new subsets of perivascular and stromal cells, which are located in distinct decidual layers.There are three major subsets of decidual NK cells, with distinctive immunomodulatory and chemokine profiles. We develop a repository of ligand-receptor complexes (https://cellphonedb.org/) and a statistical tool to predict the cell-type specificity of cell-cell communication via these molecular interactions. This identifies many regulatory interactions that prevent any damaging innate or adaptive immune responses in this environment. Our single cell atlas of the maternal-fetal interface reveals the cellular organization and interactions critical for placentation and reproductive success.During early pregnancy, the uterine mucosal lining, the endometrium, is transformed into decidua under the influence of progesterone. Decidualisation results from a complex and well-orchestrated differentiation program that involves all cellular elements of the mucosa: stromal, glandular, and immune cells, including the distinctive decidual Natural Killer cells (dNK) 1,2 . The blastocyst implants into the decidua and initially, before arterial connections are established, uterine glands are the source of histotrophic nutrition in the placenta 3,4 . Following implantation, placental extravillous trophoblast cells (EVT) invade through the decidua and move towards the spiral arteries, where they destroy the smooth muscle media and transform the arteries into high conductance vessels 5 . Balanced regulation of EVT invasion is critical to pregnancy success: arteries must be sufficiently transformed, but excessive invasion prevented, to ensure correct allocation of resources to both mother and baby 6 . The pivotal regulatory role of the decidua is obvious from the life-threatening, uncontrolled, trophoblast invasion that occurs when the decidua is absent as when the placenta implants on a previous cesarean section scar 7 .EVT have a unique HLA profile: they do not express the dominant T cell ligands, class I HLA-A and HLA-B or class II molecules 8,9 , but do express HLA-G and HLA-E and polymorphic HLA-C class I molecules. These trophoblast HLA ligands have receptors expressed by the dominant decidual immune cells, dNK, including maternal killer immunoglobulin-like receptors (KIR), that bind HLA-C molecules 10,11 . Certain combinations of maternal KIR and fetal HLA-C genetic variants are associated with pregnancy disorders such as pre-eclampsia, where trophoblast invasion is deficient 12 . However, detailed understanding of the cellular interactions in the decidua supporting early...
Multiple sclerosis (MS) is a neuroinflammatory disease with a relapsing-remitting disease course at early stages, distinct lesion characteristics in cortical gray versus subcortical white matter, and neurodegeneration at chronic stages. We assessed multilineage cell expression changes using single-nucleus RNA sequencing (snRNA-seq) and validated results using multiplex in situ hybridization in MS lesions. We found selective vulnerability and loss of excitatory CUX2 -expressing projection neurons in upper cortical layers underlying meningeal inflammation; such MS neuron populations showed upregulation of stress pathway genes and long non-coding RNAs. Signatures of stressed oligodendrocytes, reactive astrocytes and activated phagocytosing cells mapped most strongly to the rim of MS plaques. Interestingly, snRNA-seq identified phagocytosing microglia and/or macrophages by their ingestion and perinuclear import of myelin transcripts, confirmed by functional mouse and human culture assays. Our findings indicate lineage- and region-specific transcriptomic changes associated with selective cortical neuron damage and glial activation contributing to MS lesion progression.
The cellular hallmarks of Parkinson's disease (PD) are the loss of nigral dopaminergic neurons and the formation of α-synuclein-enriched Lewy bodies and Lewy neurites in the remaining neurons. Based on the topographic distribution of Lewy bodies established after autopsy of brains from PD patients, Braak and coworkers hypothesized that Lewy pathology primes in the enteric nervous system and spreads to the brain, suggesting an active retrograde transport of α-synuclein (the key protein component in Lewy bodies), via the vagal nerve. This hypothesis, however, has not been tested experimentally thus far. Here, we use a human PD brain lysate containing different forms of α-synuclein (monomeric, oligomeric and fibrillar), and recombinant α-synuclein in an in vivo animal model to test this hypothesis. We demonstrate that α-synuclein present in the human PD brain lysate and distinct recombinant α-synuclein forms are transported via the vagal nerve and reach the dorsal motor nucleus of the vagus in the brainstem in a time-dependent manner after injection into the intestinal wall. Using live cell imaging in a differentiated neuroblastoma cell line, we determine that both slow and fast components of axonal transport are involved in the transport of aggregated α-synuclein. In conclusion, we here provide the first experimental evidence that different α-synuclein forms can propagate from the gut to the brain, and that microtubule-associated transport is involved in the translocation of aggregated α-synuclein in neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.