We report the highest external quantum efficiency measured on hematite (α-Fe(2)O(3)) without intentional doping in a water-splitting environment: 46% at λ = 400 nm. This result was enabled by the introduction of TiSi(2) nanonets, which are highly conductive and have suitably high surface areas. The nanonets serve a dual role as a structural support and an efficient charge collector, allowing for maximum photon-to-charge conversion. Without the addition of any oxygen-evolving catalysts, we obtained photocurrents of 1.6 and 2.7 mA/cm(2) at 1.23 and 1.53 V vs RHE, respectively. These results highlight the importance of charge transport in semiconductor-based water splitting, particularly for materials whose performance is limited by poor charge diffusion. Our design introduces material components to provide a dedicated charge-transport pathway, alleviating the reliance on the materials' intrinsic properties, and therefore has the potential to greatly broaden where and how various existing materials can be used in energy-related applications.
Climate change is one of the greatest challenges facing humanity, and our continued sustainable development requires a portfolio of solutions to ultimately reduce the use of fossil fuels and decrease the concentration of carbon dioxide in our atmosphere. Chemistry is central to tackling this issue, and of the pathways to transform carbon dioxide into value-added compounds, single-step electrically driven chemical methods have attracted substantial interest in the last decade. This review places emphasis on the barriers that chemists must overcome to realize this technology and enable commercial use of electrochemical carbon dioxide reduction. We outline design strategies for gas-diffusion electrodes and electrolyzers that follow fundamental principles of catalysis to bridge the gap between catalyst discovery and integrated system engineering. These should address both technical (thermodynamic and kinetic) and practical (infrastructural) hurdles to implementation. We conclude by discussing how these approaches can be improved to help achieve a carbon-neutral economy.
As the most commonly encountered form of iron oxide in nature, hematite is a semiconducting crystal with an almost ideal bandgap for solar water splitting. Compelled by this unique property and other advantages, including its abundance in the Earth's crust and its stability under harsh chemical conditions, researchers have studied hematite for several decades. In this perspective, we provide a concise overview of the challenges that have prevented us from actualizing the full potentials of this promising material. Particular attention is paid to the importance of efficient charge transport, the successful realization of which is expected to result in reduced charge recombination and increased quantum efficiencies. We also present a general strategy of forming heteronanostructures to help meet the charge transport challenge. The strategy is introduced within the context of two material platforms, webbed nanonets and vertically aligned transparent conductive nanotubes. Time-resolved photoconductivity measurements verify the hypothesis that the addition of conductive components indeed increases charge lifetimes. Because the heteronanostructure approach is highly versatile, it has the potential to address other issues of hematite as well and promises new opportunities for the development of efficient energy conversion using this inexpensive and stable material.
We present evidence for Cp* being a sacrificial placeholder ligand in the [Cp*Ir(III)(chelate)X] series of homogeneous oxidation catalysts. UV-vis and (1)H NMR profiles as well as MALDI-MS data show a rapid and irreversible loss of the Cp* ligand under reaction conditions, which likely proceeds through an intramolecular inner-sphere oxidation pathway reminiscent of the reductive in situ elimination of diolefin placeholder ligands in hydrogenation catalysis by [(diene)M(I)(L,L')](+) (M = Rh and Ir) precursors. When oxidatively stable chelate ligands are bound to the iridium in addition to the Cp*, the oxidized precursors yield homogeneous solutions with a characteristic blue color that remain active in both water- and CH-oxidation catalysis without further induction period. Electrophoresis suggests the presence of well-defined Ir-cations, and TEM-EDX, XPS, (17)O NMR, and resonance-Raman spectroscopy data are most consistent with the molecular identity of the blue species to be a bis-μ-oxo di-iridium(IV) coordination compound with two waters and one chelate ligand bound to each metal. DFT calculations give insight into the electronic structure of this catalyst resting state, and time-dependent simulations agree with the assignments of the experimental spectroscopic data. [(cod)Ir(I)(chelate)] precursors bearing the same chelate ligands are shown to be equally effective precatalysts for both water- and CH-oxidations using NaIO4 as chemical oxidant.
Molecular catalysts are known for their high activity and tunability, but their solubility and limited stability often restrict their use in practical applications. Here we describe how a molecular iridium catalyst for water oxidation directly and robustly binds to oxide surfaces without the need for any external stimulus or additional linking groups. On conductive electrode surfaces, this heterogenized molecular catalyst oxidizes water with low overpotential, high turnover frequency and minimal degradation. Spectroscopic and electrochemical studies show that it does not decompose into iridium oxide, thus preserving its molecular identity, and that it is capable of sustaining high activity towards water oxidation with stability comparable to state-of-the-art bulk metal oxide catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.