The Norwegian Channel between Skagerrak, in the southeast, and the continental margin of the northern North Sea, in the northwest, is the result of processes related to repeated ice stream activity through the last 1.1 m yr. In such periods the Skagerrak Trough (700 m deep) has acted as a confluence area for glacial ice from southeastern Norway, southern Sweden and parts of the Baltic. Possibly related to the threshold in the Norwegian Channel off Jæren (250 m deep), the ice stream, on a number of occasions over the last 400 ka, inundated the coastal lowlands and left an imprint of NW‐oriented ice directional features (drumlins, stone orientations in tills and striations). Marine interstadial sediments found up to 200 m a.s.l. on Jæren have been suggested to reflect glacial isostasy related to the Norwegian Channel Ice Stream (NCIS). In the channel itself, the ice stream activity is evidenced by mega‐scale glacial lineations on till surfaces. As a result of subsidence, the most complete sedimentary records of early phases of the NCIS are preserved close to the continental margin in the North Sea Fan region. The strongest evidence for ice stream erosion during the last glacial phase is found in the Skagerrak. On the continental slope the ice stream activity is evidenced by the large North Sea Fan, which is mainly a result of deposition of glacial‐fed debris flows. Northwards of the North Sea Fan, rapid deposition of meltwater plume deposits, possibly related to the NCIS, is detected as far north as the Vøring Plateau. The NCIS system offers a unique possibility to study ice stream related processes and the impact the ice stream development had on open ocean sedimentation and circulation.
The Jaeren area in southwestern Norway has experienced great changes in sea-levels and sedimentary environments during the Weichselian, and some of these changes are recorded at Foss-Eikeland. Four diamictons interbedded with glaciomarine and glaciofluvial sediments are exposed in a large gravel pit situated above the post-glacial marine limit. The interpretation of these sediments has implications for the history of both the inland ice and the Norwegian Channel Ice Stream. During a Middle Weichselian interstadial, a large glaciofluvial delta prograded into a shallow marine environment along the coast of Jaeren. A minor glacial advance deposited a gravelly diamicton, and a glaciomarine diamicton was deposited during a following marine transgression. This subsequently was reworked by grounded ice, forming a well-defined boulder pavement. The boulder pavement is followed by glaciomarine clay with a lower, laminated part and an upper part of sandy clay. The laminated clay probably was deposited under sea-ice, whereas more open glaciomarine conditions prevailed during deposition of the upper part. The clay is intersected by clastic dykes protruding from the overlying, late Weichselian till. Preconsolidation values from the marine clay suggest an ice thickness of at least 500 m during the last glacial phase. The large variations in sea-level probably are a combined effect of eustasy and glacio-isostatic changes caused by an inland ice sheet and an ice stream in the Norwegian Channel.
Lateglacial landform associations at Jaeren (SW Norway) and their glaci-dynamic implications. Boreas, Vol. 32, The Jaeren lowland is located on the southwestern coast of Norway between a mountainous region in the east and the offshore Norwegian Channel in the west. During the Last Glacial Maximum, Jaeren was in an intermediate position between an ice stream following the Norwegian Channel northwards, and westward flowing inland ice. The dynamic behaviour of the inland ice and the interaction with the ice stream are examined by means of geomorphological analysis of digital terrain models and sedimentological investigations. SW-trending drumlins were formed at Jaeren below tributary ice from the inland, feeding into the Norwegian Channel Ice Stream. The presence of Rogen moraine in the central part of Jaeren indicates a frozen substratum prior to their formation, and this suggests a transition to cold-based ice between the tributaries. The deglaciation of the Norwegian Channel at about 15 ka BP resulted in an unstable ice front for the inland ice sheet. The formation of Rogen moraine may be explained by a dynamic advance resulting in extensional flow and fracturing of the frozen substratum between the tributaries. The dynamic advance was followed by an early deglaciation of the coastal areas as evidenced by shallow marine sediments. Deformation of the shallow marine sand indicates a glacial readvance through the valleys formerly acting as tributaries to the ice stream. Ståle Raunholm
Lateglacial landform associations at Jaeren (SW Norway) and their glaci-dynamic implications. Boreas, Vol. 32, Oslo. ISSN 0300-9483.The Jaeren lowland is located on the southwestern coast of Norway between a mountainous region in the east and the offshore Norwegian Channel in the west. During the Last Glacial Maximum, Jaeren was in an intermediate position between an ice stream following the Norwegian Channel northwards, and westward flowing inland ice. The dynamic behaviour of the inland ice and the interaction with the ice stream are examined by means of geomorphological analysis of digital terrain models and sedimentological investigations. SW-trending drumlins were formed at Jaeren below tributary ice from the inland, feeding into the Norwegian Channel Ice Stream. The presence of Rogen moraine in the central part of Jaeren indicates a frozen substratum prior to their formation, and this suggests a transition to cold-based ice between the tributaries. The deglaciation of the Norwegian Channel at about 15 ka BP resulted in an unstable ice front for the inland ice sheet. The formation of Rogen moraine may be explained by a dynamic advance resulting in extensional flow and fracturing of the frozen substratum between the tributaries. The dynamic advance was followed by an early deglaciation of the coastal areas as evidenced by shallow marine sediments. Deformation of the shallow marine sand indicates a glacial readvance through the valleys formerly acting as tributaries to the ice stream. Ståle Raunholm
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.