Autochthonous single (Ent+) or multiple (m-Ent+) enterocin-producing strains of dairy enterococci show promise for use as bioprotective adjunct cultures in traditional cheese technologies, provided they possess no pathogenic traits. This study evaluated safety, decarboxylase activity, and enzymatic (API ZYM) activity profiles of nine Ent+ or m-Ent+ Greek cheese isolates previously assigned to four distinct E. faecium (represented by the isolates KE64 (entA), GL31 (entA), KE82 (entA-entB-entP) and KE77 (entA-entB-entP-bac31)) and two E. durans (represented by the isolates KE100 (entP) and KE108 (entP-bac31-cyl)) strain genotypes. No strain was β-hemolytic or harbored vanA and vanB or the virulence genes agg, ace, espA, IS16, hyl, or gelE. All strains were of moderate to high sensitivity to ampicillin, ciprofloxacin, chloramphenicol, erythromycin, gentamicin, penicillin, tetracycline, and vancomycin, except for the E. faecium KE64 and KE82 strains, which were resistant to erythromycin and penicillin. All cheese strains showed moderate to strong esterase-lipase and aminopeptidase activities and formed tyramine, but none formed histamine in vitro. In conclusion, all Ent+ or m-Ent+ strain genotypes of the E. faecium/durans group, except for the cyl-positive E. durans KE108, were safe for use as adjunct cultures in traditional Greek cheeses. Further in situ biotechnological evaluations of the strains in real cheese-making trials are required.
The current study aims at the functional and kinetic characterization of protocatechuate (PCA) 4,5-dioxygenase (PcaA) from Pseudarthrobacter phenanthrenivorans Sphe3. This is the first single subunit Type II dioxygenase characterized in Actinobacteria. RT-PCR analysis demonstrated that pcaA and the adjacent putative genes implicated in the PCA meta-cleavage pathway comprise a single transcriptional unit. The recombinant PcaA is highly specific for PCA and exhibits Michaelis–Menten kinetics with Km and Vmax values of 21 ± 1.6 μM and 44.8 ± 4.0 U × mg−1, respectively, in pH 9.5 and at 20 °C. PcaA also converted gallate from a broad range of substrates tested. The enzymatic reaction products were identified and characterized, for the first time, through in situ biotransformation monitoring inside an NMR tube. The PCA reaction product demonstrated a keto-enol tautomerization, whereas the gallate reaction product was present only in the keto form. Moreover, the transcriptional levels of pcaA and pcaR (gene encoding a LysR-type regulator of the pathway) were also determined, showing an induction when cells were grown on PCA and phenanthrene. Studying key enzymes in biodegradation pathways is significant for bioremediation and for efficient biocatalysts development.
When developing protective starter cultures for application in cheese technologies, monitoring growth interactions between starter and adjunct LAB species and in situ expression of bacteriocin genes in the mixtures, are crucial. This study firstly aimed to monitor growth of mixed LAB strain populations during milk model fermentations by microbial counts and real-time quantitative PCR (qPCR). The primary starter Streptococcus thermophilus ST1 and costarter Lactococcus lactis subsp. cremoris M78 strains served as the basic starter composite co-inoculated in all milk treatments. Adjunct bacteriocinogenic Enterococcus faecium strains KE82 and GL31 and a ripening Lactiplantibacillus plantarum H25 strain were added separately to the starter composite resulting in four LAB combination treatments. The second aim was to quantify gene transcripts of nisin and enterocins B and A synthesized by M78, KE82 and GL31, respectively, by real-time reverse transcription PCR (RT-qPCR) and to detect the in situ antilisterial effects of the cocultures. Adjunct LAB strains showed growth compatibility with the starter, since all of them exhibited a 2 to 3 log units increase in their population levels, compared to their initial inoculation levels, with ST1 prevailing in all treatments. KE82 grew more competitively than GL31 whereas cocultures with KE82 displayed the strongest in situ antilisterial activity. Nisin gene expression levels were higher at the exponential phase of microbial growth in all treatments. Finally, expression of nisin and enterocins A and B genes was interrelated indicating an antagonistic activity.
Phenol poses a threat as one of the most important industrial environmental pollutants that must be removed before disposal. Biodegradation is a cost-effective and environmentally friendly approach for phenol removal. This work aimed at studying phenol degradation by Pseudarthrobacter phenanthrenivorans Sphe3 cells and also, investigating the pathway used by the bacterium for phenol catabolism. Moreover, alginate-immobilized Sphe3 cells were studied in terms of phenol degradation efficiency compared to free cells. Sphe3 was found to be capable of growing in the presence of phenol as the sole source of carbon and energy, at concentrations up to 1500 mg/L. According to qPCR findings, both pathways of ortho- and meta-cleavage of catechol are active, however, enzymatic assays and intermediate products identification support the predominance of the ortho-metabolic pathway for phenol degradation. Alginate-entrapped Sphe3 cells completely degraded 1000 mg/L phenol after 192 h, even though phenol catabolism proceeds slower in the first 24 h compared to free cells. Immobilized Sphe3 cells retain phenol-degrading capacity even after 30 days of storage and also can be reused for at least five cycles retaining more than 75% of the original phenol-catabolizing capacity.
The aim of this study was the biochemical and kinetic characterization of the gentisate 1,2-dioxygenase (GDO) from Pseudarthrobacter phenanthrenivorans Sphe3 and the development of a nanobiocatalyst by its immobilization on Ni2+-functionalized Fe3O4-polydopamine magnetic nanoparticles (Ni2+-PDA-MNPs). This is the first GDO to be immobilized. The gene encoding the GDO was cloned with an N-terminal His-tag and overexpressed in E. coli. The nanoparticles showed a high purification efficiency of GDO from crude cell lysates with a maximum activity recovery of 97%. The immobilized enzyme was characterized by Fourier transform infrared spectroscopy (FTIR). The reaction product was identified by 1H NMR. Both free and immobilized GDO exhibited Michaelis–Menten kinetics with Km values of 25.9 ± 4.4 and 82.5 ± 14.2 μM and Vmax values of 1.2 ± 0.1 and 0.03 ± 0.002 mM*s−1, respectively. The thermal stability of the immobilized GDO was enhanced at 30 °C, 40 °C, and 50 °C, compared to the free GDO. Stored at −20 °C, immobilized GDO retained more than 60% of its initial activity after 30 d, while the free enzyme completely lost its activity after 10 d. Furthermore, the immobilized nanoparticle–enzyme conjugate retained more than 50% enzyme activity up to the fifth cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.