Zinc is an essential trace element, exerting important antioxidant, anti-inflammatory, and antiapoptotic effects. It affects growth and development and participates in processes such as aging and cancer induction. The liver is important for the regulation of zinc homeostasis, while zinc is necessary for proper liver function. Decreased zinc levels have been implicated in both acute and chronic liver disease states, and zinc deficiency has been implicated in the pathogenesis of liver diseases. Zinc supplementation offers protection in experimental animal models of acute and chronic liver injury, but these hepatoprotective properties have not been fully elucidated. In the present review, data on zinc homeostasis, its implication in the pathogenesis of liver diseases, and its effect on acute and chronic liver diseases are presented. It is concluded that zinc could protect against liver diseases, although up to now the underlying pathophysiology of zinc and liver interactions have not been defined.
Malnutrition is a common finding in cancer patients, which can affect disease progression and survival. This review aims to critically summarize the prognostic role of nutritional status, from Body Mass Index (BMI) and weight loss to nutrition screening tools and biochemical indices, in cancer patients. According to the currently available data, Prognostic Nutritional Index (PNI) was a significant prognostic factor of patients' survival, both in univariate and multivariate analyses. Pre-operative albumin was also correlated with worse outcomes, being an independent prognostic factor of survival in several studies. BMI was also well-studied, with contradictory results. Although, lower BMI was found to be an independent prognostic factor of shorter survival in some studies, in others it did not have an impact on survival. In this aspect, this review highlights the significant prognostic role of nutritional status in the disease progression and survival of cancer patients. Further, good-quality prospective studies are needed in order to draw precise conclusions on the prognostic role of specific nutritional assessment tools, and biochemical indices associated with the nutritional status in more cancer types, such as liver, breast and prostate cancer, and hematological malignancies.
Acute and chronic excessive intracellular increase of reactive oxygen species (ROS) is involved in the development and progression of cardiovascular diseases. ROS are by-products of various oxidative physiological and biochemical processes. Sources of ROS are mitochondrial respiration, NADH/NADPH oxidase, xanthine oxidoreductase or the uncoupling of nitric oxide synthase (NOS) in vascular cells. ROS mediate various signaling pathways that underlie cardiovascular pathophysiology. The delicate equilibrium between free-radical generation and antioxidant defense is altered in favor of the former, thus leading to redox imbalance, oxidative stress, and increased cellular injury. An understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of cardiovascular diseases.
Histone synthesis and chromatin assembly are mainly associated with DNA replication and are thus intimately involved in cell cycle regulation. The expression of key components involved in these events in human cells was studied in relation to cell-proliferative status. Among several chromatin assembly factors, chromatin assembly factor (CAF)-1 stood out as the most discriminating marker of the proliferative state. We show, using both immunofluorescence and Western blot analysis, that the expression of both CAF-1 large subunits, p150 and p60, is massively down-regulated during quiescence in several cell lines. Upon exit from the quiescent state, the CAF-1 subunits are re-expressed early, before DNA replication. The amounts of either total or chromatin-associated pools of CAF-1 proteins correlate directly with cell proliferation. Regulation of CAF-1 expression is partly controlled at the RNA level, as shown by quantitative reverse transcription-PCR and Northern blot experiments. Biological material from benign and malignant human breast tumors analyzed by immunocytochemistry and immunohistochemistry exhibits a strong positive correlation between CAF-1 p60 expression and the following proliferation markers: S-phase fraction (r ؍ 0.84, P < 0.0001); Ki-67 (r ؍ 0.94, P < 0.0001); and proliferating cell nuclear antigen (r ؍ 0.95, P ؍ 0.0001). We discuss the advantages of using CAF-1 to assess cell proliferation. High CAF-1 p60 levels are also shown to be associated with various prognostic factors. Our data highlight the precise association of CAF-1 expression with the proliferative state and validate the use of this factor as a useful proliferation marker and prognostic indicator in malignant and benign breast lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.