A permeable reactive barrier (PRB) containing zerovalent iron [Fe(O)] was installed at a former uranium milling site in Monticello, UT. A large-scale column experiment was conducted at the site to test the feasibility of Fe(O) to treat U prior to installing the PRB. Effluents from the field column experiment had pH values near 7.34, moderate decreases in C(IV) and Ca concentrations, and an elevated Fe concentration (27.1 mg/L). In contrast, groundwater exiting the PRB had a pH value of 9.82, decreases in C(IV) and Ca concentrations, and a low concentration of Fe (0.17 mg/L). A geochemical model was used to explain the chemical changes that occurred in both the field column experiment and the PRB. The model simulated the systems by the progressive irreversible dissolution of Fe(O). Modeling results indicated that a longer residence time in the PRB compared with the shorter residence time in the column contributed to the disparate effluent qualities. Prior to modeling, a controlled laboratory column experiment was conducted to help evaluate the dominant chemical mechanisms by which Fe(O) removes U from aqueous solutions. Results of the laboratory column experiment indicated that only a small amount of U could be adsorbed to ferric minerals, and, therefore, this mechanism was not considered in the model.
Some uranium mill tailings disposal cells were constructed on dark-gray shale of the Upper Cretaceous Mancos Shale. Shale of this formation contains contaminants similar to those in mill tailings. To establish the contributions derived from the Mancos, we sampled 51 locations in Colorado, New Mexico, and Utah. Many of the groundwater samples were saline with nitrate, selenium, and uranium concentrations commonly exceeding 250, 000, 1000, and 200 μg/L, respectively. Higher concentrations were limited to groundwater associated with shale beds, but were not correlated with geographic area, stratigraphic position, or source of water. The elevated concentrations suggest that naturally occurring contamination should be considered when evaluating groundwater cleanup levels. At several locations, seep water was yellow or red, caused in part by dissolved organic carbon concentrations up to 280 mg/L. Most seeps had (234)U to (238)U activity ratios greater than 2, indicating preferential leaching of (234)U. Seeps were slightly enriched in (18)O relative to the meteoric water line, indicating limited evaporation. Conceptually, major ion chemical reactions are dominated by calcite dissolution following proton release from pyrite oxidation and subsequent exchange by calcium for sodium residing on clay mineral exchange sites. Contaminants are likely released from organic matter and mineral surfaces during weathering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.