Imaging of activated platelets using an activation specific anti-GPIIb/IIIa integrin single-chain antibody (scFvanti-LIBS) conjugated to a positron emitting copper-64 complex of a cage amine sarcophagine chelator (MeCOSar) is reported. This tracer was compared in vitro to a (64)Cu(II) complex of the scFv conjugated to another commonly used macrocycle, DOTA. The scFvanti-LIBS-MeCOSar conjugate was radiolabeled with (64)Cu(II) rapidly under mild conditions and with higher specific activity than scFvanti-LIBS-DOTA. The utility of scFvanti-LIBS-MeCOSar as a diagnostic agent was assessed in vivo in a mouse model of acute thrombosis. The uptake of scFvanti-LIBS-(64)CuMeCOSar in the injured vessel was significantly higher than the noninjured vessel. Positron emission tomography (PET) was used to show accumulation of scFvanti-LIBS-(64)CuMeCOSar with high and specific uptake in the injured vessel. ScFvanti-LIBS-(64)CuMeCOSar is an excellent tool for highly sensitive in vivo detection of activated platelets in PET and has the potential to be used for early diagnosis of acute thrombotic events.
Abstract. There is worldwide growing interest for the production of long-lived positron emitters for molecular imaging and the development of novel immuno-PET techniques for drugs discovery. The desire to produce solid target isotopes in Australia has significantly increased over the years and several research projects for labelling of peptides, proteins and biomolecules, including labelling of recombinant antibodies has been limited due to the availability of suitable isotopes. This has led to the recent installation and commissioning of a new lab dedicated to fully automated solid target isotope production, including 124 I, 64 Cu, 89 Zr and 86 Y.
Site-specific radiolabelling of peptides or antibodies using [(18) F]FBEM is often preferred over non-site-specific radiolabelling with [(18) F]SFB because it does not affect the affinity of the antibody to its target. Unfortunately, the synthesis of [(18) F]FBEM and its conjugation to thiol containing macromolecules requires some manual intervention, which leads to radiation exposure of the radiochemist. In this publication, we report on the complete automation of [(18) F]FBEM production and its subsequent conjugation to glutathione using a slightly modified iPHASE FlexLab module. [(18) F]FBEM was produced in 1.185 ± 0.168 GBq (15-20%; n = 10; 0.75 ± 0.106 GBq non-decay corrected) with a specific activity of 57 ± 10 GBq/µmol. Radiochemical purity was 97 ± 1% and the synthesis time including HPLC purification and reformulation was 70 min. After evaporation to dryness, [(18) F]FBEM was conjugated to glutathione in PBS buffer pH 7.4 in quantitative yields. This fully automated method does not require any manual intervention and therefore reduces the radiation exposure to the operator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.