Strong turbulence conditions create amplitude aberrations through the effects of near-field diffraction. When integrated over long optical path lengths, amplitude aberrations (seen as scintillation) can nullify local areas in the recorded image of a coherent beam, complicating the wavefront reconstruction process. To estimate phase aberrations experienced by a telescope beam control system in the presence of strong turbulence, the wavefront sensor (WFS) of an adaptive optics must be robust to scintillation. We have designed and built a WFS, which we refer to as a "Fresnel sensor," that uses near-field diffraction to measure phase errors under moderate to strong turbulent conditions. Systematic studies of its sensitivity were performed with laboratory experiments using a point source beacon. The results were then compared to a Shack-Hartmann WFS (SHWFS). When the SHWFS experiences irradiance fade in the presence of moderate turbulence, the Fresnel WFS continues to routinely extract phase information. For a scintillation index of S = 0.55, we show that the Fresnel WFS offers a factor of 9× gain in sensitivity over the SHWFS. We find that the Fresnel WFS is capable of operating with extremely low light levels, corresponding to a signal-to-noise ratio of only SNR ≈ 2 − 3 per pixel. Such a device is well-suited for coherent beam propagation, laser communications, remote sensing, and applications involving long optical path-lengths, site-lines along the horizon, and faint signals.
The nonlinear curvature wavefront sensor (nlCWFS) has been shown to be a promising alternative to existing wavefront sensor designs. Theoretical studies indicate that the inherent sensitivity of this device could offer up to a factor of 10× improvement compared to the widely-used Shack-Hartmann wavefront sensor (SHWFS). The nominal nlCWFS design assumes the use of four detector measurement planes in a symmetric configuration centered around an optical system pupil plane. However, the exact arrangement of these planes can potentially be optimized to improve aberration sensitivity, and minimize the number of iterations involved in the wavefront reconstruction process, and therefore reduce latency. We present a systematic exploration of the parameter space for optimizing the nlCWFS design. Using a suite of simulation tools, we study the effects of measurement plane position on the performance of the nlCWFS and detector pixel sampling. A variety of seeing conditions are explored, assuming Kolmogorov turbulence. Results are presented in terms of residual wavefront error following reconstruction as well as the number of iterations required for solution convergence. Alternative designs to the symmetric four-plane design are studied, including three-plane and five-plane configurations. Finally, we perform a preliminary investigation of the effects of broadband illumination on sensor performance relevant to astronomy and other applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.