In this paper we explore the effect of architectural choices on learning a variational autoencoder (VAE) for text generation. In contrast to the previously introduced VAE model for text where both the encoder and decoder are RNNs, we propose a novel hybrid architecture that blends fully feed-forward convolutional and deconvolutional components with a recurrent language model. Our architecture exhibits several attractive properties such as faster run time and convergence, ability to better handle long sequences and, more importantly, it helps to avoid the issue of the VAE collapsing to a deterministic model.
This paper presents a novel approach to recurrent neural network (RNN) regularization. Differently from the widely adopted dropout method, which is applied to forward connections of feed-forward architectures or RNNs, we propose to drop neurons directly in recurrent connections in a way that does not cause loss of long-term memory. Our approach is as easy to implement and apply as the regular feed-forward dropout and we demonstrate its effectiveness for Long Short-Term Memory network, the most popular type of RNN cells. Our experiments on NLP benchmarks show consistent improvements even when combined with conventional feedforward dropout.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.