Retroviruses have evolved multiple means to counteract host restriction factors such as single-stranded DNA-specific deoxycytidine deaminases (APOBEC3s, A3s). These include exclusion of A3s from virions by an A3-unreactive nucleocapsid or expression of an A3-neutralizing protein (Vif, Bet). However, a number of retroviruses package A3s and do not encode apparent vif - or bet -like genes, yet they replicate in the presence of A3s. The mode by which they overcome deleterious restriction remains largely unknown. Here we show that the prototypic betaretrovirus, mouse mammary tumor virus (MMTV), packages similar amounts of A3s as HIV-1ΔVif, yet its proviruses carry a significantly lower level of A3-mediated deamination events than the lentivirus. The G-to-A mutation rate increases when the kinetics of reverse transcription is reduced by introducing a mutation (F120L) to the DNA polymerase domain of the MMTV reverse transcriptase (RT). A similar A3-sensitizing effect was observed when the exposure time of single-stranded DNA intermediates to A3s during reverse transcription was lengthened by reducing the dNTP concentration or by adding suboptimal concentrations of an RT inhibitor to infected cells. Thus, the MMTV RT has evolved to impede access of A3s to transiently exposed minus DNA strands during reverse transcription, thereby alleviating inhibition by A3 family members. A similar mechanism may be used by other retroviruses and retrotransposons to reduce deleterious effects of A3 proteins.
A human betaretrovirus (HBRV) has been linked with the autoimmune liver disease, primary biliary cholangitis (PBC), and various cancers, including breast cancer and lymphoma. HBRV is closely related to the mouse mammary tumor virus, and represents the only exogenous betaretrovirus characterized in humans to date. Evidence of infection in patients with PBC has been demonstrated through the identification of proviral integration sites in lymphoid tissue, the major reservoir of infection, as well as biliary epithelium, which is the site of the disease process. Accordingly, we tested the hypothesis that patients with PBC harbor a transmissible betaretrovirus by co-cultivation of PBC patients’ lymph node homogenates with the HS578T breast cancer line. Because of the low level of HBRV replication, betaretrovirus producing cells were subcloned to optimize viral isolation and production. Evidence of infection was provided by electron microscopy, RT-PCR, in situ hybridization, cloning of the HBRV proviral genome and demonstration of more than 3400 integration sites. Further evidence of viral transmissibility was demonstrated by infection of biliary epithelial cells. While HBRV did not show a preference for integration proximal to specific genomic features, analyses of common insertion sites revealed evidence of integration proximal to cancer associated genes. These studies demonstrate the isolation of HBRV with features similar to mouse mammary tumor virus and confirm that patients with PBC display evidence of a transmissible viral infection.
Table of contents Oral presentations Session 1: Entry & uncoating O1 Host cell polo-like kinases (PLKs) promote early prototype foamy virus (PFV) replication Irena Zurnic, Sylvia Hütter, Ute Lehmann, Nicole Stanke, Juliane Reh, Tobias Kern, Fabian Lindel, Gesche Gerresheim, Martin Hamann, Erik Müllers, Paul Lesbats, Peter Cherepanov, Erik Serrao, Alan Engelman, Dirk Lindemann O2 A novel entry/uncoating assay reveals the presence of at least two species of viral capsids during synchronized HIV-1 infection Claire Da Silva Santos, Kevin Tartour, Andrea Cimarelli O3 Dynamics of nuclear envelope association and nuclear import of HIV-1 complexes Rya Burdick, Jianbo Chen, Jaya Sastri, Wei-Shau Hu, Vinay Pathak O4 Human papillomavirus protein E4 potently enhances the susceptibility to HIV infection Oliver T. Keppler Session 2: Reverse transcription & integration O5 Structure and function of HIV-1 integrase post translational modifications Karine Pradeau, Sylvia Eiler, Nicolas Levy, Sarah Lennon, Sarah Cianferani, Stéphane Emiliani, Marc Ruff O6 Regulation of retroviral integration by RNA polymerase II associated factors and chromatin structure Vincent Parissi Session 3: Transcription and latency O7 A novel single-cell analysis pipeline to identify specific biomarkers of HIV permissiveness Sylvie Rato, Antonio Rausell, Miguel Munoz, Amalio Telenti, Angela Ciuffi O8 A capsid-dependent integration program linking T cell activation to HIV-1 gene expression Alexander Zhyvoloup, Anat Melamed, Ian Anderson, Delphine Planas, Janos Kriston-Vizi, Robin Ketteler, Chen-Hsuin Lee, Andy Merritt, Petronela Ancuta, Charles Bangham, Ariberto Fassati O9 Characterisation of new RNA polymerase III and RNA polymerase II transcriptional promoters in the Bovine Leukemia Virus genome Anthony Rodari, Benoit Van Driessche, Mathilde Galais, Nadége Delacourt, Sylvain Fauquenoy, Caroline Vanhulle, Anna Kula, Arsène Burny, Olivier Rohr, Carine Van Lint O10 Tissue-specific dendritic cells differentially modulate latent HIV-1 reservoirs Thijs van Montfort, Renee van der Sluis, Dave Speijer, Ben Berkhout Session 4: RNA trafficking & packaging O11 A novel cis -acting element affecting HIV replication Bo Meng, Andrzej Rutkowski, Neil Berry, Lars Dölken, Andrew Lever O12 Tolerance of HIV’s late gene expression towards stepwise codon adaptation Thomas Schuster, Benedikt Asbach, Ralf Wagner Session 5: Assembly & release O13 Importance of the tax-inducible actin-bundling protein fascin for transmission of human T cell leukemia virus Type 1 (HTLV-1) Christine Gross, Veit Wiesmann, Martina Kalmer, Thomas Wittenberg, Jan Gettemans, Andrea K. Thoma-Kress O14 Lentiviral nef prote...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.