Concentrated solutions of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium nitrate (LiNO3) salts in either diethylene-glycol dimethyl-ether (DEGDME) or triethylene-glycol dimethyl-ether (TREGDME) are herein characterized in terms of chemical and electrochemical properties in view of possible applications as the electrolyte in lithium–oxygen batteries. X-ray photoelectron spectroscopy at the lithium metal surface upon prolonged storage in lithium cells reveals the complex composition and nature of the solid electrolyte interphase (SEI) formed through the reduction of the solutions, while thermogravimetric analysis shows a stability depending on the glyme chain length. The applicability of the solutions in the lithium metal cell is investigated by means of electrochemical impedance spectroscopy (EIS), chronoamperometry, galvanostatic cycling, and voltammetry, which reveal high conductivity and lithium transference number as well as a wide electrochemical stability window of both electrolytes. However, a challenging issue ascribed to the more pronounced evaporation of the electrolyte based on DEGDME with respect to TREGDME actually limits the application of the former in the Li/O2 battery. Hence, EIS measurements reveal a very fast increase in the impedance of cells using the DEGDME-based electrolyte upon prolonged exposure to the oxygen atmosphere, which leads to a performance decay of the corresponding Li/O2 battery. Instead, cells using the TREGDME-based electrolyte reveal remarkable interphase stability and much more enhanced response with specific capacity ranging from 500 to 1000 mA h g–1 referred to the carbon mass in the positive electrode, with an associated maximum practical energy density of 450 W h kg–1. These results suggest the glyme volatility as a determining factor for allowing the use of the electrolyte media in a Li/O2 cell. Therefore, electrolytes using a glyme with sufficiently high boiling point, such as TREGDME, which is further increased by the relevant presence of salts including a lithium protecting sacrificial one (LiNO3), can allow the application of the solutions in a safe and high-performance lithium–oxygen battery.
Supporting Information and the ORCID identification number(s) for the author(s) of this article can be found under: https://doi.
When salinity of municipal wastewater increases and approaches the limits of toxicity for plants, moderate desalting of wastewater becomes vital for keeping it suitable for irrigation. Nanofiltration (NF) is an attractive solution, as it partially removes NaCl. Unfortunately, commercial NF membranes (e.g., NF270) strongly reject multivalent ions present in wastewater, especially, scale-forming calcium and phosphate. This results in undesired demineralization, severe membrane scaling, and unacceptably low water recovery. To address this problem, we report here that a positively charged NF (p-NF) performs significantly better than NF270, owing to overall lower rejection of scale-forming ions. Therefore, for a commensurate flux and NaCl rejection, p-NF shows much less scaling than NF270, even at recoveries as large as 80%−85%. This suggests that p-NF may have an advantage over standard NF for moderate desalting of wastewater and other water sources with high scaling potential.
The top polyamide layer of composite reverse osmosis (RO) membranes has a fascinatingly complex structure, yet nanoscale nonuniformities inherently present in polyamide layer may reduce selectivity, e.g., for boron rejection. This study examines improving selectivity by in situ "caulking" such nonuniformities using concentration polarization-enhanced graft-polymerization with a surfactant added to the reactive solution. The surfactant appears to enhance both polarization (via monomer solubilization in surfactant micelles) and adherence of graft-polymer to the membrane surface, which facilitates grafting and reduces monomer consumption. The effect of surfactant was particularly notable for a hydrophobic monomer glycidyl methacrylate combined with a nonionic surfactant Triton X-100. With Triton added at an optimal level, close to critical micellization concentration (CMC), monomer gets solubilized and highly concentrated within micelles, which results in a significantly increased degree of grafting and uniformity of the coating compared to a procedure with no surfactant added. Notably, no improvement was obtained for an anionic surfactant SDS or the cationic surfactant DTAB, in which cases the high CMC of surfactant precludes high monomer concentration within micelles. The modification procedure was also up-scalable to membranes elements and resulted in elements with permeability comparable to commercial brackish water RO elements with superior boric acid rejection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.