We report a laser operation from a Fe:CdTe single crystal, pumped by 40-ns pulses of a 4.12-µm Fe:ZnSe laser. The maximum output energy of 5.8 mJ was produced at 5.4 µm with 30% absorbed energy slope efficiency. A record 2300-nm-wide smooth and continuous wavelength tunability over 4.5-6.8 µm range was demonstrated, being the longest wavelength tuning achieved for Fe2+-doped chalcogenide lasers. We also discuss the features of the oscillation spectra.
We report for the first time to the best of our knowledge on the ultra-short pulse (USP) generation in the dispersion-managed erbium-doped all-fiber ring laser hybridly mode-locked with boron nitride-doped single-walled carbon nanotubes in the co-action with a nonlinear polarization evolution in the ring cavity with a distributed polarizer. Stable 92.6 fs dechirped pulses were obtained via precise polarization state adjustment at a central wavelength of 1560 nm with 11.2 mW average output power, corresponding to the 2.9 kW maximum peak power. We have also observed the laser switching from a USP generation regime to a chirped pulse one with a corresponding pulse-width of 7.1 ps at the same intracavity dispersion.
High-energy laser operation of a
F
e
2
+
-doped single-crystal CdTe is demonstrated at the temperature of 77 K. Pumped with 250 µs pulses of a 4.08 µm Fe:ZnSe laser, the Fe:CdTe laser produced a record output of 0.35 J, with a slope efficiency of 44%. A further up-scaling by employing high-energy pump sources is feasible, thus facilitating material-processing applications. The laser was tunable from 4.86 to 5.37 µm. In a nonselective cavity, the laser’s central wavelength was 5.03 µm at 77 K, and shifted to 5.23 µm at 215 K. At the later operation point, reachable using a Peltier element, the laser still produced 0.15 J of output energy with an efficiency of 22%.
We report on ultra-short stretched pulse generation in an all-fiber erbium-doped ring laser with a highly-nonlinear germanosilicate fiber inside the resonator with a slightly positive net-cavity group velocity dispersion (GVD). Stable 84 fs pulses were obtained with a 12 MHz repetition rate at a central wavelength of 1560 nm with a 48.1 nm spectral pulse width (full width at half maximum, FWHM) and 30 mW average output power; this corresponds to the 29.7 kW maximum peak power and 2.5 nJ pulse energy obtained immediately from the oscillator.
Ultrashort pulse lasers constitute an important tool in the emerging field of optical frequency metrology and are enabling unprecedented measurement capabilities and new applications in a wide range of fields, including precision spectroscopy, atomic clocks, ultracold gases, and molecular fingerprinting. We demonstrate the generation of stable 127-fs self-similar pulses at a central wavelength of 1560 nm with 7.14-mW average output power. Similariton lasers have a low repetition rate deviation in the averaging time interval [Formula: see text], a low relative intensity noise [Formula: see text] (30 Hz to 10 kHz), a narrow single comb line width of 32 kHz, and high reliability. Thus, such lasers are highly promising for further development of the stabilized combs and open up a robust and substantially simplified route to synthesizing low-noise microwaves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.