This article deals with thermophysical properties of red and white bricks. If we want to protect the high standard of quality building materials, we need to know the physical parameters which can evaluate the quality. The most important for building materials are mainly thermophysical, mechanical parameters and parameters which can determine the structure of materials. The article presents results of thermophysical parameters measurements of red and white bricks during the temperature stabilization for different values of moisture content. For our measurements, we have chosen a hot wire method and a dynamic plane source method. Both methods are classified as transient methods and they are very convenient for measurements of thermophysical parameters of materials with a compact structure. The results of measurements show that temperature and moisture content have a significant effect on thermophysical parameters of bricks.
The formulation of the Hall–Petch relationship in the early 1950s has raised immense interest in studying the influence of the grain size of solid materials on their properties. Grain refinement can be achieved through extreme deformation. In the presented study, Equal-Channel Angular Pressing (ECAP) was successfully applied to produce an ultrafine-grained microstructure in a pure commercial Cu of 99.9 wt%. Samples were processed by ECAP at 21 °C for six passes via route A. A new equation of equilibrium that allows the exact determination of the number of extrusions and other technological parameters required to achieve the desired final grain size has been developed. The presented research also deals, in a relatively detailed and comparative way, with the use of ultrasound. In this context, a very close correlation between the process functions of extrusion and the speed of longitudinal ultrasonic waves was confirmed.
With rationalization of electricity consumption, it is possible to obtain savings of electric energy in households, as well as financing and capital input for the electricity production. Rational use of appliances in the best operating modes can reduce the final consumption of electricity, representing a positive impact on improving the environment quality. The main objective of this paper was to measure the electricity consumption of appliances in various operating modes. The measured values from two energy suppliers were recorded and processed in tables and figures, from which we created a table of the financial costs necessary for operation of appliances in different modes. For the calculation of annual electricity consumption and electricity prices, an application allowing selection of individual products from suppliers with current electricity prices was designed. According to the tables of electricity prices, various modes of appliance operation allow the selection of the most preferred mode for appliance operation based on the lowest price, rational consumption and energy costs. The aim of the paper is to demonstrate the consumption and costs of operating appliances in certain operating modes, standby modes and their efficient use or functionally similar appliances for reduction of electricity consumption in households.
This article deals with the regression analysis of the ultrasonic signal amplitude when the character of the reflection surface has been changed from a planar case to a sharp corner case. The experiment was performed at a measurement distance within the interval from 100 mm to 215 mm. A nonlinear correlation between the amplitude of the ultrasound signal and the measured distance was demonstrated. By analyzing the frequency spectra, a poor nonlinear correlation between the maximum frequency component and the distance vector was found for the sharp corner case versus the planar case, which proved similar nonlinear characteristics as the signal amplitude marker. The strong linear correlation in the distance difference vectors in the amplitude analysis of the ultrasound signal confirmed the hypothesis of a direct relationship between the reflection surface geometric characteristic and the polarity of the difference. The ultrasound signal was identified as a 3rd-order dynamic system. The nonlinear correlation of the steady-state values of the modelled transfer functions versus distance likewise shows the characteristic of the polarity difference or character derivative as a quantification marker of the characteristics of the reflection surface from the geometric point of view.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.