Biological activities of the salannin type of limonoids isolated from Azadirachta indica A. Juss were assessed using the gram pod borer Helicoverpa armigera (Hubner) and the tobacco armyworm Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Inhibition of larval growth was concomitant with reduced feeding by neonate and third instar larvae. All three compounds exhibited strong antifeedant activity in a choice leaf disc bioassay with 2.0, 2.3 and 2.8 microg/cm(2) of 3-O-acetyl salannol, salannol and salannin, respectively deterring feeding by 50% in S. litura larvae. In nutritional assays, all three compounds reduced growth and consumption when fed to larvae without any effect on efficiency of conversion of ingested food (ECI), suggesting antifeedant activity alone. No toxicity was observed nor was there any significant affect on nutritional indices following topical application, further suggesting specific action as feeding deterrents. When relative growth rates were plotted against relative consumption rates, growth efficiency of the H. armigera fed diet containing 3-O-acetyl salannol, salannol or salannin did not differ from that of starved control larvae (used as calibration curve), further confirming the specific antifeedant action of salannin type of limonoids. Where the three compounds were co-administered, no enhancement in activity was observed. Non-azadirachtin limonoids having structural similarities and explicitly similar modes of action, like feeding deterrence in the present case, have no potentiating effect in any combination.
Multicomponent reactions are powerful tools for organic chemistry, and among them, the Ugi reaction provides remarkable improvement in many fields of organic chemistry such us combinatorial chemistry, medicinal chemistry, and peptide chemistry. A new, enzyme-catalyzed example of the Ugi three-component reaction is presented. The studies include the selection of an enzyme as well as determination of the scope and limitations of the newly described reaction. The presented method combines the enzyme promiscuity and multicomponent reaction advantages in the first one-pot formation of dipeptide 1.
The biological activity of 6beta-hydroxygedunin isolated from Azadirachta indica A. Juss. was assessed using the gram pod borer, Helicoverpa armigera (Hubner), and Asian armyworm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae), alone and in combination with other limonoids, gedunin, salannin, nimbinene, and azadirachtin. The compound exhibited growth inhibitory activity in artificial diet bioassays, with 24.2 and 21.5 ppm, respectively, inhibiting growth by 50%. This efficacy was higher in comparison to gedunin (EC(50) = 50.8 and 40.4 ppm), salannin (EC(50) = 74.5 and 72.0 ppm), and nimbinene (EC(50) = 391.4 and 404.5 ppm). Azadirachtin, however, remained the most active neem allelochemical against both insect species. Nutritional assays clearly demonstrated that, though relative consumption and growth rates of fourth instar larvae were reduced, gedunin-type compounds induced physiological toxicity, evident by reduced efficiency of conversion of ingested food (ECI) in feeding experiments. Salannin and nimbinene, on the contrary, induced concentration-dependent feeding deterrence only. In feeding experiments, combinations of the compounds revealed that when azadirachtin was present in a mixture, EC(50) values did not deviate from the individual efficacy of azadirachtin (0.26 and 0.21 ppm, respectively) against H. armigera and S. litura larvae. However, a combination without azadirachtin did show a potentiation effect with potent EC(50) values among structurally different molecules, i.e., when salannin or nimbinene was combined with 6beta-hydroxygedunin or gedunin rather than structurally similar salannin + nimbinene or 6beta-hydroxygedunin + gedunin. Obviously, azadirachtin being the most active compound in neem is not synergized or influenced by any other limonoid, but other non-azadirachtin limonoids were more potent in specific combinations vis-à-vis the structural chemistry of the compound. It is obvious from the present study that potentiation among non-azadirachtin limonoids having explicitly two different modes of action, such as feeding deterrence and physiological toxicity, may be playing a significant role in the potentiation effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.