Context/Objective: Deep venous thrombosis (DVT) is a well-known complication of an acute spinal cord injury (SCI). However, the prevalence of DVT in patients with chronic SCI has only been reported in a limited number of studies. The aim of our study was to examine the prevalence of DVT in patients with SCI beyond three months after injury. Design: Cross-sectional study. Setting: Rehabilitation Department at the Bydgoszcz University Hospital in Poland. Participants: Sixty-three patients with SCI that were more than 3 months post injury. The patients, ranging in age from 13 to 65 years, consisted of 15 women and 48 men; the mean age of the patients was 32.1 years. The time from injury varied from 4 to 124 months. Outcome measures: Clinical assessment, D-dimer and venous duplex scan. Results: The venous duplex scan revealed DVT in 5 of the 63 patients. The post-injury time in four of the patients varied between 4 and 5 months; one patient was 42 months post-injury. Conclusion: DVT occurred in patients with chronic SCI, mainly by the 6th post injury month.
This mini review is focused on the emerging nexus between the medical device and pharmaceutical industries toward the treatment of damaged articular cartilage. The physical rationale of hyaluronic acid and phospholipid preparations as tribological surgical adjuvants for repaired articular cartilage surfaces is explored, with directions for possible new research which have arisen due to the therapeutic advance of the physiochemical scalpel. Because synovial joint lubrication regimes become dysfunctional at articular cartilage lesion sites as a result of the regional absence of the surface active phospholipid layer and its inability to reform without surgical repair, hyaluronic acid and phospholipid intra-articular injections have yielded inconsistent efficacy outcomes and only short-term therapeutic benefits mostly due to non-tribological effects. Parameters for hydrophobic-polar type interactions as applied to the lubricating properties of normal and osteoarthritic synovial fluid useful for repaired articular cartilage surfaces are discussed.
Introduction and Hypothesis. Some papers have shown that bone mineral density (BMD) may not be accurate in predicting fracture risk. Recently microarchitecture parameters have been reported to give information on bone characteristics. The aim of this study was to find out if the values of volume, fractal dimension, and bone mineral density are correlated with bone strength. Methods. Forty-two human bone samples harvested during total hip replacement surgery were cut to cylindrical samples. The geometrical mesh of layers of bone mass obtained from microCT investigation and the volumes of each layer and fractal dimension were calculated. The finite element method was applied to calculate the compression force F causing ε = 0.8% strain. Results. There were stronger correlations for microarchitecture parameters with strength than those for bone mineral density. The values of determination coefficient R
2 for mean volume and force were 0.88 and 0.90 for mean fractal dimension and force, while for BMD and force the value was 0.53. The samples with bigger mean bone volume of layers and bigger mean fractal dimension of layers (more complex structure) presented higher strength. Conclusion. The volumetric and fractal dimension parameters better describe bone structure and strength than BMD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.