Despite the multitude of available methods, the characterization of ultrafast pulses remains a challenging endeavor, especially at the single-photon level. We introduce a pulse characterization scheme that maps the magnitude of its short-time Fourier transform. Contrary to many well-known solutions it does not require nonlinear effects and is therefore suitable for single-photon-level measurements. Our method is based on introducing a series of controlled time and frequency shifts, where the latter is performed via an electro-optic modulator allowing a fully-electronic experimental control. We characterized the full spectral and temporal width of a classical and single-photon-level pulse and successfully tested the applicability of the reconstruction algorithm of the spectral phase and amplitude. The method can be extended by implementing a phase-sensitive measurement and is naturally well-suited to partially-incoherent light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.