The article presents research on the effect of the sharpness angle on the quality of machined surface of native wood species (pine, beech, and black locust) and an exotic species called iroko. Four sharpness angle values were analyzed at 25, 40, 45, and 55°. The experiment was conducted on a bottom-spindle milling machine, with a constant spindle rotational speed (6000 min-1) and four feeding speeds of 3.2, 8.3, 12.5, and 16.7 m/min. The influence of sharpness angle, feeding speed, and wood species on the quality of machined surface of wood was determined. The optimum ranges of the sharpness angle were established with respect to wood surface quality. The surface roughness of the samples decreased with decreasing in the sharpness angle in range of 55° to 40°. The optimal value of the angle was 40°, and the roughness increased with increasing feeding speed. It was found that an increase in wood density decreased surface roughness.
The presented research concerns the use of a laser profilometer to measure the surface roughness of green Douglas fir heartwood veneers during the peeling process. It investigates the effect of various process parameters on the surface quality. Three experiments were carried out with a single variable factor for each experiment: log centration, soaking temperature and cutting speed. Moreover, the origin of the surface roughness of Douglas fir green veneers was investigated. The study shows that laser profilometer seems to be a useful equipment in online measurement of surface roughness of green veneers. Based on the experiment results it was stated that surface roughness of Douglas fir veneers is characterized by large differentiation depending on the location on the veneer. The performed analysis shows that the surface roughness of Douglas fir green veneer could be improved when using relatively high cutting speed, not too high steaming temperature and logs with a centered core. The presented study shows that the laser profilometer can be effectively applied to the measurement and evaluation of green veneers during the peeling process and that there is still an area to develop this methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.