In this paper, an automatic algorithm for the detection of subsidence areas in SAR interferograms is proposed. It is based on the analysis of spatial distribution of the interferogram phase, and its coherence and entropy. The developed method was tested for differential interferograms generated on the basis of Sentinel-1 SAR images covering mining areas in South Poland. The obtained results were compared with those achieved using a method based on circular Gabor filters. Performed analysis revealed that the detection rate for the proposed method varied from 34% to 83%. It is an improved method based on Gabor filters that achieved a detection rate from 30% to 53%.
The main goal of this research was to propose a new method of polarimetric SAR data decomposition that will extract additional polarimetric information from the Synthetic Aperture Radar (SAR) images compared to other existing decomposition methods. Most of the current decomposition methods are based on scattering, covariance or coherence matrices describing the radar wave-scattering phenomenon represented in a single pixel of an SAR image. A lot of different decomposition methods have been proposed up to now, but the problem is still open since it has no unique solution. In this research, a new polarimetric decomposition method is proposed that is based on polarimetric signature matrices. Such matrices may be used to reveal hidden information about the image target. Since polarimetric signatures (size 18 × 9) are much larger than scattering (size 2 × 2), covariance (size 3 × 3 or 4 × 4) or coherence (size 3 × 3 or 4 × 4) matrices, it was essential to use appropriate computational tools to calculate the results of the proposed decomposition method within an acceptable time frame. In order to estimate the effectiveness of the presented method, the obtained results were compared with the outcomes of another method of decomposition (Arii decomposition). The conducted research showed that the proposed solution, compared with Arii decomposition, does not overestimate the volume-scattering component in built-up areas and clearly separates objects within the mixed-up areas, where both building, vegetation and surfaces occur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.