The linkage isomers [Re(6)Se(8)(PEt(3))(5)(1,5-MeN(4)C)](+) and [Re(6)Se(8)(PEt(3))(5)(2,5-MeN(4)C)](+) were generated upon reaction of tetrabutylammonium azide with the corresponding acetonitrile complex, [Re(6)Se(8)(PEt(3))(5)(NCCH(3))](2+); these are the first (tetrazolato)rhenium complexes reported to date.
A systematic substitution of the terminal chlorides coordinated to the hexanuclear cluster [Re(6)S(8)Cl(6)](4-) has been conducted. The following complexes: [Re(6)S(8)(PEt(3))Cl(5)](3-) (1), cis- (cis-2) and trans-[Re(6)S(8)(PEt(3))(2)Cl(4)](2-) (trans-2), mer- (mer-3) and fac-[Re(6)S(8)(PEt(3))(3)Cl(3)](-) (fac-3), and cis- (cis-4) and trans-[Re(6)S(8)(PEt(3))(4)Cl(2)] (trans-4) were synthesized and fully characterized. Compared to the substitution of the halide ligands of the related [Re(6)S(8)Br(6)](4-) and [Re(6)Se(8)I(6)](3-) clusters, the chloride ligands are slower to substitute which allowed us to prepare the first monophosphine cluster (1). In addition, the synthesis of fac-3 was optimized by using cis-2 as the starting material, which led to a significant increase in the overall yield of this isomer. Notably, we observed evidence of phosphine isomerization taking place during the preparation of the facial isomer; this was unexpected based on the relatively inert nature of the Re-P bond. The structures of Bu(4)N(+) salts of trans-2, mer-3, and fac-3 were determined using X-ray crystallography. All compounds display luminescent behavior. A study of the photophysical properties of these complexes includes measurement of the excited state lifetimes (which ranged from 4.1-7.1 μs), the emission quantum yields, the rates of radiative and non-radiative decay, and the rate of quenching with O(2). Quenching studies verify the triplet state nature of the excited state.
Two hexanuclear rhenium clusters containing azide ligands, [Re6Se8(PEt3)5(N3)]BF4 and [Re6Se8(PEt3)4(N3)2], were synthesized from the analogous pyridine complexes and fully characterized. Studies show that [Re6Se8(PEt3)5(N3)]BF4 reacts with activated alkynes, dimethyl acetylenedicarboxylate and methyl 4-hydroxyhex-2-yneoate, to form the triazolate cluster complexes [Re6Se8(PEt3)5(L1 or L2)]BF4 (where L1 = 4,5-bis(methoxycarbonyl)-1,2,3-triazol-2-yl and L2 = 4-methoxycarbonyl-5-(1-propanol)-1,2,3-triazol-2-yl). The bis-triazolato complex, cis-[Re6Se8(PEt3)4(L1)2] was also prepared via a similar reaction starting with cis-[Re6Se8(PEt3)4(N3)2] demonstrating that these clusters can promote two azide moieties to undergo heterocyclic ring formation. The structures of [Re6Se8(PEt3)5(N3)]BF4, [Re6Se8(PEt3)4(N3)2], and [Re6Se8(PEt3)5(L1)](BF4), were determined by single-crystal X-ray diffraction analysis. In addition, studies involving the alkylation of [Re6Se8(PEt3)5(L1)]BF4 with benzyl bromide and methyl iodide are reported.
The preparation of two new families of hexanuclear rhenium cluster complexes containing benzonitrile and phenyl-substituted tetrazolate ligands is described. Specifically, we report the preparation of a series of cluster complexes with the formula [Re(6)Se(8)(PEt(3))(5)L](2+) where L = benzonitrile, p-aminobenzonitrile, p-methoxybenzonitrile, p-acetylbenzonitrile, or p-nitrobenzonitrile. All of these complexes undergo a [2 + 3] cycloaddition with N(3)(-) to generate the corresponding [Re(6)Se(8)(PEt(3))(5)(5-(p-X-phenyl)tetrazol-2-yl)](+) (or [Re(6)Se(8)(PEt(3))(5)(2,5-p-X-phenyltetrazolate)](+)) cluster complexes, where X = NH(2), OMe, H, COCH(3), or NO(2). Crystal structure data are reported for three compounds: [Re(6)Se(8)(PEt(3))(5)(p-acetylbenzonitrile)](BF(4))(2)•MeCN, [Re(6)Se(8)(PEt(3))(5)(2,5-phenyltetrazolate)](BF(4))•CH(2)Cl(2), and [Re(6)Se(8)(PEt(3))(5)(2,5-p-aminophenyltetrazolate)](BF(4)). Treatment of [Re(6)Se(8)(PEt(3))(5)(2,5-phenyltetrazolate)](BF(4)) with HBF(4) in CD(3)CN at 100 °C leads to protonation of the tetrazolate ring and formation of [Re(6)Se(8)(PEt(3))(5)(CD(3)CN)](2+). Surprisingly, alkylation of the phenyl and methyl tetrazolate complexes ([Re(6)Se(8)(PEt(3))(5)(2,5-N(4)CPh)](BF(4)) and [Re(6)Se(8)(PEt(3))(5)(1,5-N(4)CMe)](BF(4))) with methyl iodide and benzyl bromide, leads to the formation of mixtures of 1,5- and 2,5-disubstituted tetrazoles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.