Air pollution in Macau has become a serious problem following the Pearl River Delta’s (PRD) rapid industrialization that began in the 1990s. With this in mind, Macau needs an air quality forecast system that accurately predicts pollutant concentration during the occurrence of pollution episodes to warn the public ahead of time. Five different state-of-the-art machine learning (ML) algorithms were applied to create predictive models to forecast PM2.5, PM10, and CO concentrations for the next 24 and 48 h, which included artificial neural networks (ANN), random forest (RF), extreme gradient boosting (XGBoost), support vector machine (SVM), and multiple linear regression (MLR), to determine the best ML algorithms for the respective pollutants and time scale. The diurnal measurements of air quality data in Macau from 2016 to 2021 were obtained for this work. The 2020 and 2021 datasets were used for model testing, while the four-year data before 2020 and 2021 were used to build and train the ML models. Results show that the ANN, RF, XGBoost, SVM, and MLR models were able to provide good performance in building up a 24-h forecast with a higher coefficient of determination (R2) and lower root mean square error (RMSE), mean absolute error (MAE), and biases (BIAS). Meanwhile, all the ML models in the 48-h forecasting performance were satisfactory enough to be accepted as a two-day continuous forecast even if the R2 value was lower than the 24-h forecast. The 48-h forecasting model could be further improved by proper feature selection based on the 24-h dataset, using the Shapley Additive Explanations (SHAP) value test and the adjusted R2 value of the 48-h forecasting model. In conclusion, the above five ML algorithms were able to successfully forecast the 24 and 48 h of pollutant concentration in Macau, with the RF and SVM models performing the best in the prediction of PM2.5 and PM10, and CO in both 24 and 48-h forecasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.