Novel, unitized structures with porous Ti6Al4V alloy on one side and compositionally graded, hard CoCrMo alloy surface on the other side have been fabricated using laser engineered net shaping (LENS™) process. Gradient structures with 50%, 70% and 86% CoCrMo alloy on the top surface showed high hardness in the range of 615 and 957 HV. The gradient structures were evaluated for their in vitro wear rate and Co release up to 3000 m of sliding distance. The wear rate of ultrahigh molecular weight polyethylene and 100% CoCrMo alloy substrates found to depend on the hardness and microstructural features of the counter surface rubbing against them. In general, the wear rate of both the substrates increased with a decrease in the CoCrMo alloy concentration on the top surface of gradient pins. However, the wear rate of gradient pins was lower than 100% CoCrMo alloy pins due to their high hardness. Lowest wear rate in the range of 5.07 to 7.99 × 10 −8 mm 3 /Nm was observed for gradient pins having 86% CoCrMo alloy on the top surface. The amount of Co released, in the range of 0.38 and 0.91 ppm, during in vitro wear testing of gradient structures was comparable to that of 100% CoCrMo alloy (0.25 and 0.77 ppm). Present unitized structures with open porosity on one side and hard, wear resistant surface on the other side can minimize the wear-induced osteolysis and aseptic loosening, and eliminate the need for multiple parts with different compositions for load-bearing implants such as total hip prostheses.
This first generation investigation evaluates the in vitro tribological performance of laser-processed Ta coatings on Ti for load-bearing implant applications. Linear reciprocating wear tests in simulated body fluid showed one order of magnitude less wear rate, of the order of 10−4mm3(N.m)−1, for Ta coatings compared to Ti. Our results demonstrate that Ta coatings can potentially minimize the early-stage bone-implant interface micro-motion induced wear debris generation due to their excellent bioactivity comparable to that of hydroxyapatite (HA), high wear resistance and toughness compared to popular HA coatings.
Calcium phosphate (CaP)-titanium (Ti) composites were processed using a commercial laser engineered net shaping (LENS™) machine to increase wear resistance of articulating surfaces of load-bearing implants. Such composites could be used to cover the surface of titanium implants and potentially increase the lifetime of a joint replacement. It was hypothesized that adding calcium phosphate to commercially pure titanium (CP-Ti) and Ti6Al4V alloy via laser processing would decrease the material loss when subjected to wear. This added protection would be due to the in situ formation of a CaP tribofilm. Different amounts of CaP were mixed by weight with pure Ti and Ti6Al4V powders. The mixed powders were then made into cylindrical samples using a commercial LENS™-750 system. Microstructures were observed and it was found the CaP had integrated into the titanium metal matrix. Compression test revealed that CaP significantly increased the 0.2% offset yield strength as well as the ultimate compressive strength of CP-Ti. It was found that the addition of CaP to pure titanium reduced the material loss and increased wear resistance. This was due to the formation of CaP tribofilm on the articulating surface. The in situ formed tribofilm also lowered the coefficient of friction and acted as a solid lubricant between the two interacting metal surfaces. Overall, CaP addition to Ti and its alloy Ti6Al4V show an effective way to minimize wear induced damage due to the formation of in situ tribofilm at the articulating surface, a strategy that can be utilized in various biomedical devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.