A nomenclature is described for restriction endonucleases, DNA methyltransferases, homing endonucleases and related genes and gene products. It provides explicit categories for the many different Type II enzymes now identified and provides a system for naming the putative genes found by sequence analysis of microbial genomes.
A nomenclature is described for restriction endonucleases, DNA methyltransferases, homing endonucleases and related genes and gene products. It provides explicit categories for the many different Type II enzymes now identi®ed and provides a system for naming the putative genes found by sequence analysis of microbial genomes.
DNA methyltransferases methylate target bases within specific nucleotide sequences. Three structures are described for bacteriophage T4 DNA-adenine methyltransferase (T4Dam) in ternary complexes with partially and fully specific DNA and a methyl-donor analog. We also report the effects of substitutions in the related Escherichia coli DNA methyltransferase (EcoDam), altering residues corresponding to those involved in specific interaction with the canonical GATC target sequence in T4Dam. We have identified two types of protein-DNA interactions: discriminatory contacts, which stabilize the transition state and accelerate methylation of the cognate site, and antidiscriminatory contacts, which do not significantly affect methylation of the cognate site but disfavor activity at noncognate sites. These structures illustrate the transition in enzyme-DNA interaction from nonspecific to specific interaction, suggesting that there is a temporal order for formation of specific contacts.
DNA isolated from macronuclei of the ciliate, Tetrahymena pyriformis, has been found to contain [6N]methyl adenine (MeAde); this represents the first clear demonstration of significant amounts of MeAde in the DNA of a eucaryote. The amounts of macronuclear MeAde differed slightly between different strains of Tetrahymena, with approximately 0.65–0.80% of the adenine bases being methylated. The MeAde content of macronuclear DNA did not seem to vary in different physiological states. The level of MeAde in DNA isolated from micronuclei, on the other hand, was quite low (at least tenfold lower than in macronuclear DNA).
We examined the DNA of Saccharomyces cerevisiae by both HpaII-MspI restriction enzyme digestion and high-performance liquid chromatography analysis for the possible presence of 5-methylcytosine. Both of these methods failed to detect cytosine methylation within this yeast DNA; i.e., there is <1 5-methylcytosine per 3,100 to 6,000 cytosine residues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.